Patents by Inventor Ronnie E. Smith

Ronnie E. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240274976
    Abstract: New and/or improved coatings, layers or treatments for porous substrates, including battery separators or separator membranes, and/or coated or treated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components, and/or to new or improved coated or treated porous substrates, including battery separators, where the coating comprises at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components are disclosed.
    Type: Application
    Filed: February 27, 2024
    Publication date: August 15, 2024
    Inventors: Zhengming Zhang, Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma, Daniel R. Alexander
  • Publication number: 20240199898
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Application
    Filed: January 16, 2024
    Publication date: June 20, 2024
    Inventors: Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma
  • Publication number: 20240190115
    Abstract: In one aspect, a wide microporous film comprises one or more layers comprising a polyolefin, wherein the microporous film has a width of at least 50 inches and comprises one or more non-porous regions. In some embodiments, the microporous film is at least 55 inches or at least 60 inches. Moreover, in some embodiments, the non-porous region is located along a creased region of the microporous film.
    Type: Application
    Filed: April 12, 2022
    Publication date: June 13, 2024
    Inventors: David Anzini, Ronnie E. Smith, Daniel R. Alexander
  • Patent number: 11949124
    Abstract: New and/or improved coatings, layers or treatments for porous substrates, including battery separators or separator membranes, and/or coated or treated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components, and/or to new or improved coated or treated porous substrates, including battery separators, where the coating comprises at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components are disclosed.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: April 2, 2024
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma, Daniel R. Alexander
  • Publication number: 20240100781
    Abstract: Improved battery separators, base films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of making and/or using such separators, films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of enhancing battery or cell charge rates, charge capacity, and/or discharge rates, and/or methods of improving batteries, systems including such batteries, vehicles including such batteries and/or systems, and/or the like; biaxially oriented porous membranes, composites including biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators with improved charge capacities and the related methods and methods of manufacture, methods of use, and the like; flat sheet membranes, liquid retention media; dry process separators; biaxially stretched separators; dry process biaxially stretched separators having a thickness range between about 5 ?m and 50 ?m, preferably between about 10 ?m and 25 ?m, having imp
    Type: Application
    Filed: December 4, 2023
    Publication date: March 28, 2024
    Inventors: Xiaomin Zhang, Gerald P. Rumierz, Karl F. Humiston, Charles E. Haire, Tyrone S. Fields, Michael A. Braswell, Ronald A. Proctor, Ronnie E. Smith
  • Patent number: 11879070
    Abstract: Coating compositions for porous substrates, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, coating compositions for porous substrates, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: January 23, 2024
    Assignee: Celgard, LLC
    Inventors: Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma
  • Patent number: 11833763
    Abstract: Improved battery separators, base films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of making and/or using such separators, films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of enhancing battery or cell charge rates, charge capacity, and/or discharge rates, and/or methods of improving batteries, systems including such batteries, vehicles including such batteries and/or systems, and/or the like; biaxially oriented porous membranes, composites including biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators with improved charge capacities and the related methods and methods of manufacture, methods of use, and the like; flat sheet membranes, liquid retention media; dry process separators; biaxially stretched separators; dry process biaxially stretched separators having a thickness range between about 5 ?m and 50 ?m, preferably between about 10 ?m and 25 ?m, having imp
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: December 5, 2023
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Gerald P. Rumierz, Karl F. Humiston, Charles E. Haire, Tyrone S. Fields, Michael A. Braswell, Ronald A. Proctor, Ronnie E. Smith
  • Publication number: 20230180872
    Abstract: Materials for personal protective equipment (PPE) that is water resistant, blood resistant, and virus resistant are disclosed. The materials described herein are also highly breathable adding to the comfort of PPE made from these materials. The materials for PPE described herein contain one or more uniaxially or biaxially stretched microporous films.
    Type: Application
    Filed: April 19, 2021
    Publication date: June 15, 2023
    Inventors: Barry J. Summey, Eric R. White, Ronnie E. Smith, David Anzini, Daniel R. Alexander, Anna Verderame, Tamara A. Taylor
  • Patent number: 11626349
    Abstract: A multi-layered battery separator for a lithium secondary battery includes a first layer of a dry processed membrane bonded to a second layer of a wet processed membrane. The first layer may be made of a polypropylene based resin. The second layer may be made of a polyethylene based resin. The separator may have more than two layers. The separator may have a ratio of TD/MD tensile strength in the range of about 1.5-3.0. The separator may have a thickness of about 35.0 microns or less. The separator may have a puncture strength of greater than about 630 gf. The separator may have a dielectric breakdown of at least about 2000V.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: April 11, 2023
    Assignee: Celgard, LLC
    Inventors: Lie Shi, Jill V. Watson, Ronald W. Call, Ronnie E. Smith
  • Publication number: 20230101052
    Abstract: Improved battery separators, base films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of making and/or using such separators, films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of enhancing battery or cell charge rates, charge capacity, and/or discharge rates, and/or methods of improving batteries, systems including such batteries, vehicles including such batteries and/or systems, and/or the like; biaxially oriented porous membranes, composites including biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators with improved charge capacities and the related methods and methods of manufacture, methods of use, and the like; flat sheet membranes, liquid retention media; dry process separators; biaxially stretched separators; dry process biaxially stretched separators having a thickness range between about 5 ?m and 50 ?m, preferably between about 10 ?m and 25 ?m, having imp
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Inventors: Xiaomin Zhang, Geraid P. Rumierz, Karl F. Humiston, Charles E. Haire, Tyrone S. Flelds, Michael A. Braswell, Ronald A. Proctor, Ronnie E. Smith
  • Publication number: 20230038385
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 9, 2023
    Inventors: Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma
  • Patent number: 11557812
    Abstract: Improved battery separators, base films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of making and/or using such separators, films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of enhancing battery or cell charge rates, charge capacity, and/or discharge rates, and/or methods of improving batteries, systems including such batteries, vehicles including such batteries and/or systems, and/or the like; biaxially oriented porous membranes, composites including biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators with improved charge capacities and the related methods and methods of manufacture, methods of use, and the like; flat sheet membranes, liquid retention media; dry process separators; biaxially stretched separators; dry process biaxially stretched separators having a thickness range between about 5 ?m and 50 ?m, preferably between about 10 ?m and 25 ?m, having imp
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: January 17, 2023
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Gerald P. Rumierz, Karl F. Humiston, Charles E. Haire, Tyrone S. Fields, Michael A. Braswell, Ronald A. Proctor, Ronnie E. Smith
  • Patent number: 11437684
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: September 6, 2022
    Assignee: Celgard, LLC
    Inventors: Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma
  • Publication number: 20210367308
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 25, 2021
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Patent number: 11094995
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 17, 2021
    Assignee: Celgard, LLC
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Publication number: 20210194091
    Abstract: Improved battery separators, base films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of making and/or using such separators, films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of enhancing battery or cell charge rates, charge capacity, and/or discharge rates, and/or methods of improving batteries, systems including such batteries, vehicles including such batteries and/or systems, and/or the like; biaxially oriented porous membranes, composites including biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators with improved charge capacities and the related methods and methods of manufacture, methods of use, and the like; flat sheet membranes, liquid retention media; dry process separators; biaxially stretched separators; dry process biaxially stretched separators having a thickness range between about 5 ?m and 50 ?m, preferably between about 10 ?m and 25 ?m, having imp
    Type: Application
    Filed: March 9, 2021
    Publication date: June 24, 2021
    Inventors: Xiaomin Zhang, Gerald P. Rumierz, Karl F. Humiston, Charles E. Haire, Tyrone S. Fields, Michael A. Braswell, Ronald A. Proctor, Ronnie E. Smith
  • Publication number: 20210143511
    Abstract: New and/or improved coatings, layers or treatments for porous substrates, including battery separators or separator membranes, and/or coated or treated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components, and/or to new or improved coated or treated porous substrates, including battery separators, where the coating comprises at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components are disclosed.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 13, 2021
    Inventors: Zhengming Zhang, Michael B. Lane, Insik Jeon, Edward Kruger, Xiang E. Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma, Daniel R. Alexander
  • Patent number: 10944087
    Abstract: Improved battery separators, base films or membranes and/or a method of making or using such separators, base films or membranes are provided. The preferred inventive separators, base films or membranes are made by a dry-stretch process and have improved strength, high porosity, high charge capacity and high porosity to provide excellent charge rate and/or charge capacity performance in a rechargeable battery.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: March 9, 2021
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Gerald P. Rumierz, Karl F. Humiston, Charles E. Haire, Tyrone S. Fields, Michael A. Braswell, Ronald A. Proctor, Ronnie E. Smith
  • Publication number: 20200335759
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Application
    Filed: July 21, 2017
    Publication date: October 22, 2020
    Applicant: Celgard, LLC
    Inventors: Michael B. LANE, Insik JEON, Edward KRUGER, Xiang YU, Ronnie E. SMITH, Stefan REINARTZ, Junqing MA
  • Publication number: 20200303706
    Abstract: A microporous membrane or substrate for an electrochemical device having a layer of a metal and/or metal oxide on at least one side of a polymeric porous membrane, wherein said layer is applied using a deposition method or technique such as vapor deposition, and wherein said layer contains one or more phases of a reactive metal oxide.
    Type: Application
    Filed: March 29, 2017
    Publication date: September 24, 2020
    Inventors: Ronnie E. Smith, Katherine Chemelewski, Shante P. Williams, Junqing MA, James M. Rapley