Patents by Inventor Rony Abovitz

Rony Abovitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10539794
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 21, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10533850
    Abstract: A method of rendering virtual content comprises capturing an image of a field of view of a user, extracting a set of map points based on the captured image, recognizing an object based on the extracted set of map points, retrieving semantic data associated with the recognized object and attaching the semantic data to object data associated with the recognized object, and inserting the recognized object data and the semantic data attached thereto into a virtual world model such that virtual content, when rendered at a user device of the user, is displayed in relation to the recognized object.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: January 14, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 10527850
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 7, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10521025
    Abstract: Systems and methods for interacting with virtual objects in a three-dimensional space using a wearable system are disclosed. The wearable system can be programmed to allow a user to interact with virtual objects using a user input device and poses. The wearable system can also automatically determine contextual information such as layout of the virtual objects in the user's environment and switch the user input mode based on the contextual information.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: December 31, 2019
    Assignee: Magic Leap, Inc.
    Inventors: James M. Powderly, Savannah Niles, Frank Hamilton, Marshal A. Fontaine, Rony Abovitz, Alysha Naples
  • Publication number: 20190391399
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 26, 2019
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20190380793
    Abstract: A system for conducting a medical procedure includes a first camera-based 3-D motion sensor configured to generate signals related to the position of a procedure object in the operating room and a controller coupled to the camera-based 3-D motion sensor. The controller is configured to define a predetermined operational plan including positions of a procedure object over time, assign a desired time milestone for each position of the object in the predetermined operational plan, and automatically monitor progress of the procedure based at least in part upon one or more positions of the procedure object over time. The controller is further configured to compare the one or more positions with the desired time milestone, record data relating to an actual time for each position of the object compared with the desired time milestone, and use the data to provide a recommendation for a change to a future predetermined operational plan.
    Type: Application
    Filed: July 25, 2019
    Publication date: December 19, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Rony Abovitz, Hyosig Kang
  • Publication number: 20190368868
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Application
    Filed: May 13, 2019
    Publication date: December 5, 2019
    Applicant: MAGIC LEAP, INC.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 10495453
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: December 3, 2019
    Assignee: MAGIC LEAP, INC.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Matthew D. Watson
  • Patent number: 10473934
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: November 12, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10473459
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparatus may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: November 12, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 10466477
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: November 5, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20190328534
    Abstract: A system for implanting a prosthetic device includes a first component of the prosthetic device configured to be disposed in an actual joint and including a first feature. The system further includes a processing circuit configured to determine, based in part on a second component of the prosthetic device that is disposed on an actual bone of the actual joint, a placement of the first component on the same actual bone to obtain a desired relationship between the first component and the second component. The processing circuit is further configured to determine a relationship between the first component and the second component. The second component includes a second feature, and the determined relationship is based at least in part on the first feature and the second feature, and at least one of the first feature and the second feature includes a characteristic that is represented as a virtual feature.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 31, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Jason K. Otto, Binyamin Hajaj, Rony Abovitz, Amit Mistry, Scott Nortman, Steven B. Brown
  • Patent number: 10459229
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 29, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10451877
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 22, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10444504
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 15, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10437062
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 8, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10429649
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 1, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10408613
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: September 10, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 10386639
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 20, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10386641
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 20, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt