Patents by Inventor Ross S. Dando

Ross S. Dando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7105208
    Abstract: The invention includes methods and processes in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: September 12, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
  • Patent number: 7000636
    Abstract: The invention includes chemical vapor deposition methods, including atomic layer deposition, and valve assemblies for use with a reactive precursor in semiconductor processing. In one implementation, a chemical vapor deposition method includes positioning a semiconductor substrate within a chemical vapor deposition chamber. A first deposition precursor is fed to a remote plasma generation chamber positioned upstream of the deposition chamber, and a plasma is generated therefrom within the remote chamber and effective to form a first active deposition precursor species. The first species is flowed to the deposition chamber. During the flowing, flow of at least some of the first species is diverted from entering the deposition chamber while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber. At some point, diverting is ceased while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: February 21, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Gurtej S. Sandhu, Allen P. Mardian
  • Patent number: 6997403
    Abstract: The present invention is generally directed to a vaporizer with positive liquid shut-off. In one illustrative embodiment, the vaporizer is comprised of a body, a liquid inlet and a carrier gas inlet coupled to the body, a nozzle positioned within the body, the nozzle having at least one opening formed therethrough that defines a vaporized liquid exit, and a positive shut-off valve, a portion of which is adapted to engage the vaporized liquid exit of the nozzle. In another illustrative embodiment, the vaporizer is comprised of a body, a liquid inlet and a carrier gas inlet coupled to the body and a plurality of peltier cells coupled to the body.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: February 14, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Allen P. Mardian, Raynald B. Cantin, Gurtej S. Sandhu
  • Patent number: 6980085
    Abstract: Wireless communication devices and methods of forming and operating the same are provided. The present invention provides a wireless communication device including a substrate having a support surface, wireless communication circuitry upon the support surface of the substrate, at least one antenna electrically coupled with the wireless communication circuitry, a conductive layer configured to interact with the antenna, and an insulative layer intermediate the conductive layer and the antenna. A method of forming a wireless communication device includes providing a substrate having a support surface, forming an antenna upon the support surface, conductively coupling wireless communication circuitry with the antenna, forming an insulative layer over at least a portion of the antenna, and providing a conductive layer over at least a portion of the insulative layer.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: December 27, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Ross S. Dando
  • Patent number: 6955725
    Abstract: Reactors having isolated gas connectors, systems that include such reactors, and methods for depositing materials onto micro-devices workpieces are disclosed herein. In one embodiment, a reactor for depositing material onto a micro-device workpiece includes a reaction chamber, a lid attachable to the reaction chamber, and a connector. The connector has a first portion coupled to the lid, a second portion coupled to the reaction chamber, a gas passageway extending through the first and second portions, and a seal. The seal can surround the gas passageway between the first and second portions. The first portion is detachably coupled to the second portion. In one aspect of this embodiment, the connector can also include a second gas passageway extending through the first and second portions and a second seal surrounding the second gas passageway between the first and second portions.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: October 18, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Ross S. Dando
  • Patent number: 6936547
    Abstract: The present invention is generally directed to a novel gas delivery system for various deposition processes, and various methods of using same. In one illustrative embodiment, a deposition tool comprises a process chamber, a wafer stage adapted for holding a wafer positioned therein, and a gas delivery system positioned in the chamber above a position where a plasma will be generated in the chamber, wherein substantially all of a reactant gas is delivered into the chamber via the gas delivery system. In another illustrative embodiment, the reactant gas exiting the gas delivery system is directed so as to cover substantially all of an area defined by an upper surface of the wafer.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: August 30, 2005
    Assignee: Micron Technology, Inc..
    Inventors: Weimin Li, Neal R. Rueger, Li Li, Ross S. Dando, Kevin T. Hamer, Allen P. Mardian
  • Patent number: 6935372
    Abstract: The invention includes chemical vapor deposition methods, including atomic layer deposition, and valve assemblies for use with a reactive precursor in semiconductor processing. In one implementation, a chemical vapor deposition method includes positioning a semiconductor substrate within a chemical vapor deposition chamber. A first deposition precursor is fed to a remote plasma generation chamber positioned upstream of the deposition chamber, and a plasma is generated therefrom within the remote chamber and effective to form a first active deposition precursor species. The first species is flowed to the deposition chamber. During the flowing, flow of at least some of the first species is diverted from entering the deposition chamber while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber. At some point, diverting is ceased while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: August 30, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Gurtej S. Sandhu, Allen P. Mardian
  • Patent number: 6926775
    Abstract: Reactors having gas distributors for depositing materials onto micro-device workpieces, systems that include such reactors, and methods for depositing materials onto micro-device workpieces are disclosed herein. In one embodiment, a reactor for depositing materials onto a micro-device workpiece includes a reaction chamber, a passageway, and a door assembly. The reaction chamber includes a gas distributor configured to provide a flow of gas(es) to a micro-device workpiece on a workpiece holder. The passageway, which has a first end open to the reaction chamber and a second end apart from the reaction chamber, is configured to provide ingression to and egression from the chamber for processing the micro-device workpiece. The door assembly is configured to open and sealably close a door at the second end of the passageway. A gas conditioning system positioned in the door is configured to maintain a desired concentration and phase of gas constituents in the passageway.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: August 9, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Danny Dynka
  • Patent number: 6858264
    Abstract: A chemical vapor deposition chamber has a vacuum exhaust line extending therefrom. Material is deposited over a first plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line. At least a portion of the vacuum exhaust line is isolated from the deposition chamber. While isolating, a cleaning fluid is flowed to the vacuum exhaust line effective to at least reduce thickness of the effluent product over the internal walls within the vacuum exhaust line from what it was prior to initiating said flowing. After said flowing, the portion of the vacuum exhaust line and the deposition chamber are provided in fluid communication with one another and material is deposited over a second plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Philip H. Campbell, Craig M. Carpenter, Allen P. Mardian
  • Patent number: 6849133
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: February 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Patent number: 6845734
    Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: January 25, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
  • Patent number: 6838114
    Abstract: Methods for depositing materials onto micro-device workpieces in a reaction chamber. One embodiment of such a method comprises providing a flow of a first precursor through the reaction chamber to deposit the first precursor onto the micro-device workpiece in the reaction chamber, and providing a flow of a purge gas through the reaction chamber to purge excess amounts of the first precursor. The method continues by monitoring a parameter correlated to a quantity of the first precursor and/or the purge gas in the reaction chamber as the first precursor and/or the purge gas flows through the reaction chamber. An additional aspect of this method is terminating the flow of the first precursor and/or the flow of the purge gas based on the monitored parameter of the quantity of the first precursor and/or the purge gas.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: January 4, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian
  • Publication number: 20040255859
    Abstract: A method and apparatus for delivering precursors to a chemical vapor deposition or atomic layer deposition chamber is provided. The apparatus includes a temperature-controlled vessel containing a precursor. An energy source is used to vaporize the precursor at its surface such that substantially no thermal decomposition of the remaining precursor occurs. The energy source may include a carrier gas, a radio frequency coupling device, or an infrared irradiation source. After the precursor is exposed to the energy source, the vaporized portion of the precursor is transported via a temperature-controlled conduit to a chemical vapor deposition or atomic deposition chamber for further processing.
    Type: Application
    Filed: July 7, 2004
    Publication date: December 23, 2004
    Inventors: Ross S. Dando, Craig M. Carpenter, Allen P. Mardian, Garo J. Derderian, Dan Gealy
  • Publication number: 20040237895
    Abstract: A pressure-regulating device for use with a vapor reaction chamber, and methods of its use, are disclosed. In one embodiment according to the invention, the device comprises a magnetically-actuatable valve having an aperture, a plug containing a plug magnet within the valve, a magnet disposed around the valve and magnetically associated with the plug magnet, and an actuator associated with the magnet. The actuator moves the magnet to magnetically bias the plug magnet thereby moving the plug into and out of sealing engagement with the aperture and regulating pressure within the reaction chamber. Plug movement is achieved without interconnecting mechanical parts disposed through the body of the valve that provide surfaces on which adduct, from depositing vaporous by-product material, can accumulate. Since magnetic interaction moves the plug rather than mechanical parts attached to the valve body, build-up of adduct on the internal surfaces of the valve is reduced.
    Type: Application
    Filed: July 1, 2004
    Publication date: December 2, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Randy W. Mercil, Philip H. Campbell
  • Patent number: 6821347
    Abstract: Reactors for vapor deposition of materials onto a microelectronic workpiece, systems that include such reactors, and methods for depositing materials onto microelectronic workpieces. In one embodiment, a reactor for vapor deposition of a material comprises a reaction chamber and a gas distributor. The reaction chamber can include an inlet and an outlet. The gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: November 23, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Allen P. Mardian, Ross S. Dando, Kimberly R. Tschepen, Garo J. Derderian
  • Patent number: 6814813
    Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: November 9, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
  • Publication number: 20040216671
    Abstract: A chemical vapor deposition apparatus includes a deposition chamber defined at least in part by chamber walls, a substrate holder inside the chamber, and at least one process chemical inlet to the chamber. At least one purge inlet to the chamber is positioned elevationally above the substrate holder and outside a lateral periphery of the substrate holder. The purge inlet is configured to inject at least one purge material into the chamber and past the substrate holder. The purge inlet can be positioned and configured to inject an annular purge material curtain concentric to the substrate holder. A chemical vapor deposition method includes injecting at least one purge material into a deposition chamber and forming a purge curtain from the injected purge material. The purge curtain can extend downward from elevationally above a substrate holder and outside a lateral periphery of the substrate holder. The purge curtain can flow past the substrate holder.
    Type: Application
    Filed: May 26, 2004
    Publication date: November 4, 2004
    Inventors: Craig M. Carpenter, Ross S. Dando
  • Patent number: 6800134
    Abstract: The invention includes chemical vapor deposition methods, including atomic layer deposition, and valve assemblies for use with a reactive precursor in semiconductor processing. In one implementation, a chemical vapor deposition method includes positioning a semiconductor substrate within a chemical vapor deposition chamber. A first deposition precursor is fed to a remote plasma generation chamber positioned upstream of the deposition chamber, and a plasma is generated therefrom within the remote chamber and effective to form a first active deposition precursor species. The first species is flowed to the deposition chamber. During the flowing, flow of at least some of the first species is diverted from entering the deposition chamber while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber. At some point, diverting is ceased while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Gurtej S. Sandhu, Allen P. Mardian
  • Patent number: 6800172
    Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
  • Patent number: 6797337
    Abstract: A method and apparatus for delivering precursors to a chemical vapor deposition or atomic layer deposition chamber is provided. The apparatus includes a temperature-controlled vessel containing a precursor. An energy source is used to vaporize the precursor at its surface such that substantially no thermal decomposition of the remaining precursor occurs. The energy source may include a carrier gas, a radio frequency coupling device, or an infrared irradiation source. After the precursor is exposed to the energy source, the vaporized portion of the precursor is transported via a temperature-controlled conduit to a chemical vapor deposition or atomic deposition chamber for further processing.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: September 28, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Craig M. Carpenter, Allen P. Mardian, Garo J. Derderian, Dan Gealy