Patents by Inventor Ross S. Dando

Ross S. Dando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030200926
    Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.
    Type: Application
    Filed: April 24, 2002
    Publication date: October 30, 2003
    Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
  • Publication number: 20030194508
    Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 16, 2003
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
  • Publication number: 20030192477
    Abstract: The invention includes an engagement mechanism for semiconductor substrate deposition process kit hardware, including a body having a distal portion and a proximal portion. The body is sized for movement through a passageway of a semiconductor substrate deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. At least engager is mounted to the distal portion of the body The engager is sized for movement through said passageway with the body. The engager is configured to releasably engage a component of process kit hardware received within said chamber. The invention includes methods of replacing at least a portion of semiconductor substrate deposition process kit hardware. The invention includes methods of depositing materials over a plurality of semiconductor substrates. Other implementations are contemplated.
    Type: Application
    Filed: March 24, 2003
    Publication date: October 16, 2003
    Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
  • Publication number: 20030194829
    Abstract: A method includes removing at least a piece of a deposition chamber liner from a deposition chamber by passing it through a passageway to the deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. A replacement for the removed deposition chamber liner piece is provided into the chamber by passing the replacement through said passageway. A liner apparatus includes a plurality of pieces which when assembled within a selected semiconductor substrate deposition processor chamber are configured to restrict at least a majority portion of all internal wall surfaces which define said semiconductor substrate deposition processor chamber from exposure to deposition material within the chamber. At least some of the pieces are sized for passing completely through a substrate passageway to the chamber through which semiconductor substrates pass into and out of the chamber for deposition processing.
    Type: Application
    Filed: January 23, 2003
    Publication date: October 16, 2003
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
  • Publication number: 20030183156
    Abstract: The invention includes chemical vapor deposition methods, including atomic layer deposition, and valve assemblies for use with a reactive precursor in semiconductor processing. In one implementation, a chemical vapor deposition method includes positioning a semiconductor substrate within a chemical vapor deposition chamber. A first deposition precursor is fed to a remote plasma generation chamber positioned upstream of the deposition chamber, and a plasma is generated therefrom within the remote chamber and effective to form a first active deposition precursor species. The first species is flowed to the deposition chamber. During the flowing, flow of at least some of the first species is diverted from entering the deposition chamber while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber. At some point, diverting is ceased while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 2, 2003
    Inventors: Ross S. Dando, Gurtej S. Sandhu, Allen P. Mardian
  • Patent number: 6620253
    Abstract: The invention includes an engagement mechanism for semiconductor substrate deposition process kit hardware, including a body having a distal portion and a proximal portion. The body is sized for movement through a passageway of a semiconductor substrate deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. At least engager is mounted to the distal portion of the body The engager is sized for movement through said passageway with the body. The engager is configured to releasably engage a component of process kit hardware received within said chamber. The invention includes methods of replacing at least a portion of semiconductor substrate deposition process kit hardware. The invention includes methods of depositing materials over a plurality of semiconductor substrates. Other implementations are contemplated.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: September 16, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
  • Patent number: 6613587
    Abstract: A method includes removing at least a piece of a deposition chamber liner from a deposition chamber by passing it through a passageway to the deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. A replacement for the removed deposition chamber liner piece is provided into the chamber by passing the replacement through said passageway. A liner apparatus includes a plurality of pieces which when assembled within a selected semiconductor substrate deposition processor chamber are configured to restrict at least a majority portion of all internal wall surfaces which define said semiconductor substrate deposition processor chamber from exposure to deposition material within the chamber. At least some of the pieces are sized for passing completely through a substrates passageway to the chamber through which semiconductor substrates pass into and out of the chamber for deposition processing.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: September 2, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
  • Publication number: 20030159653
    Abstract: A reactive precursor feeding manifold assembly includes a body comprising a plenum chamber. A valve is received proximate the body and has at least two inlets and at least one outlet. At least one valve inlet is configured for connection with a reactive precursor source. At least one valve outlet feeds to a precursor inlet to the plenum chamber. A purge stream is included which has a purge inlet to the plenum chamber which is received upstream of the plenum chamber precursor inlet. The body has a plenum chamber outlet configured to connect with a substrate processing chamber. In one implementation, the plenum chamber purge inlet is angled from the plenum chamber precursor inlet. In one implementation, structure is included on the body which is configured to mount the body to a substrate processing chamber with the plenum chamber outlet proximate to and connected with a substrate processing chamber inlet.
    Type: Application
    Filed: February 28, 2002
    Publication date: August 28, 2003
    Inventors: Ross S. Dando, Craig M. Carpenter, Garo J. Derderian
  • Publication number: 20030159780
    Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
    Type: Application
    Filed: February 22, 2002
    Publication date: August 28, 2003
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
  • Patent number: 6545604
    Abstract: In one aspect, the invention encompasses a method for electronic tracking of units originating from a common source which comprises a plurality of units physically joined with one another. A first transponder is physically associated with the common source, and the source is split to separate it into three or more of the units. A second transponder is physically associated with one of the three or more units, and the second transponder sends a code. The code of the second transponder is electrically associated with an identifier of the common source. In a particular aspect, the common source is an animal carcass.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: April 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Mark E. Tuttle
  • Publication number: 20030033980
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Application
    Filed: August 17, 2001
    Publication date: February 20, 2003
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Patent number: 6494305
    Abstract: Carcass-tracking apparatus housings, carcass-tracking apparatus, and carcass-tracking methods are described. In one embodiment, a carcass-tracking apparatus housing is provided comprising an enclosure dimensioned to contain a transponder and having first and second oppositely-facing surface areas. The first surface area is positioned for mounting against a surface of a carcass-transporting device. The first and second surface areas are preferably different from one another. In another embodiment, the housing comprises an enclosure dimensioned to contain a transponder and having a plurality of surfaces which face in different directions. One of the surfaces is positioned for mounting on a carcass-transporting device. At least two other surfaces have openings therein which are joined with a transponder-receiving space. The openings are preferably sized and positioned to accommodate wireless communication with a transponder which can be received within the transponder-receiving space.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: December 17, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Donald L. Black, Ross S. Dando
  • Publication number: 20020129768
    Abstract: A chemical vapor deposition (CVD) apparatus includes a deposition chamber defined partly by a chamber wall. The chamber wall has an innermost surface inside the chamber and an outermost surface outside the chamber. The apparatus further includes a valve body having a seat between the innermost and outermost surfaces of the chamber wall. The chamber wall can be a lid and the valve can include a portion of the lid as at least a part of the seat. The valve body can include at least a part of a valve housing between the innermost and outermost surfaces of the chamber wall. Such a valve body can even include a portion of the chamber wall as at least part of the valve housing. The deposition apparatus can further include at least a part of a process chemical inlet to the valve body between the innermost and outermost surfaces of the chamber wall. In one example, the chamber wall can form at least a part of the chemical inlet.
    Type: Application
    Filed: March 15, 2001
    Publication date: September 19, 2002
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell, Allen P. Mardian, Jeff N. Fuss, Randy W. Mercil
  • Publication number: 20020121235
    Abstract: A chemically sensitive warning apparatus capable of changing colors upon contact with a chemical is disclosed. The apparatus preferably comprises an elongated tape having opposed, first and second major surfaces and warning indicia visible to an individual viewing the first surface to provide visual indication of possible danger or hazardous condition. Mounted to the tape is at least one chemical indicator that is responsive to the presence of at least one chemical by changing colors so as to provide a visual indication of the exposure of the indicator to the chemical. The tape may also include at least one color reference indicia to facilitate interpretation of the color of the chemical indicator when the chemical indicator changes color upon exposure to the chemical.
    Type: Application
    Filed: March 1, 2001
    Publication date: September 5, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Allen P. Mardian, Philip H. Campbell, Ross S. Dando
  • Patent number: 6373391
    Abstract: In one aspect, the invention includes a device for sensing a change in an environment proximate the device. The device comprises a planar loop of conductive material extending along a first plane. The conductive material comprises two ends and the loop is configured to be broken upon the change in the environment. The device further comprises a pair of prongs. A first of the pair of prongs extends from one of the two ends of the conductive material and a second of the pair of prongs extends from an other of the two ends of the conductive material. The first and second prongs extend along the first plane. Additionally, the device comprises a circuit support having circuitry supported thereby and a pair of orifices extending therethrough. The prongs extend through the orifices to electrically connect. the circuitry supported by the circuit support to the planar loop of material. In another aspect, the invention includes a device for sensing termites.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: April 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Rickie C. Lake, Mark E. Tuttle, Ross S. Dando
  • Patent number: 6166637
    Abstract: In one aspect, the invention encompasses a system for electronic identification of a plurality of units. The system comprises transponders which are connected with respective individual units, and which comprise antennas. The system further comprises an interrogator configured to read the transponders. The interrogator includes an interrogator antenna. At least one of the interrogator antenna or the transponder antennas comprise a coil of conductive material which has a first planar portion within a first plane and a second planar portion within a second plane, with the first and second planes intersecting. In another aspect, the invention comprises a method for electronic identification of a plurality of passing animal bodies, wherein the individual animal bodies have respective transponders associated therewith. An interrogator having an antenna associated therewith is provided.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: December 26, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Scott R. Cyr, Ross S. Dando
  • Patent number: 6161281
    Abstract: Battery mounting apparatuses, electronic devices, and methods of forming electrical connections are described. In one implementation, a flexible circuit substrate has an area within which an electrical component, e.g. a thin-profile battery terminal housing member, is to be adhered. A conductive contact node pattern is disposed within the area and sized to be conductively adhered with the component. In one aspect, the conductive contact node pattern comprises an outer conductive node on the substrate at least a portion of which is positioned within the outermost 25% of the area. An electrical component is conductively bonded with the contact node pattern and encapsulating material is provided over and underneath the component. In a preferred aspect, the substrate and electrical component are vacuum processed sufficiently to redistribute the encapsulating material under the component.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: December 19, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Rickie C. Lake, Krishna Kumar
  • Patent number: 6074896
    Abstract: A method of processing a semiconductive material wafer includes, a) providing a semiconductive material wafer having integrated circuitry fabricated within discrete die areas on the wafer, the discrete die areas having bond pads formed therewithin; b) cutting at least partially into the semiconductive material wafer about the die areas to form a series of die cuts, the cuts having edges; c) depositing an insulative material over the wafer and to within the cuts to at least partially cover the cut edges and to at least partially fill the cuts with the insulative material; d) removing the insulative material from being received over the bond pads and leaving the insulative material within the die cuts; and e) after the removing, cutting into and through the insulative material within the die cuts and through the wafer. A semiconductor chip includes an outer surface having conductive bond pads proximately associated therewith. Side edges extend from the outer surface.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: June 13, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Ross S. Dando
  • Patent number: 6051875
    Abstract: A method of processing a semiconductive material wafer includes, a) providing a semiconductive material wafer having integrated circuitry fabricated within discrete die areas on the wafer, the discrete die areas having bond pads formed therewithin; b) cutting at least partially into the semiconductive material wafer about the die areas to form a series of die cuts, the cuts having edges; c) depositing an insulative material over the wafer and to within the cuts to at least partially cover the cut edges and to at least partially fill the cuts with the insulative material; d) removing the insulative material from being received over the bond pads and leaving the insulative material within the die cuts; and e) after the removing, cutting into and through the insulative material within the die cuts and through the wafer. A semiconductor chip includes an outer surface having conductive bond pads proximately associated therewith. Side edges extend from the outer surface.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: April 18, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Ross S. Dando
  • Patent number: 5978230
    Abstract: Battery mounting apparatuses, electronic devices, and methods of forming electrical connections are described. In one implementation, a flexible circuit substrate has an area within which an electrical component, e.g. a thin-profile battery terminal housing member, is to be adhered. A conductive contact node pattern is disposed within the area and sized to be conductively adhered with the component. In one aspect, the conductive contact node pattern comprises an outer conductive node on the substrate at least a portion of which is positioned within the outermost 25% of the area. An electrical component is conductively bonded with the contact node pattern and encapsulating material is provided over and underneath the component. In a preferred aspect, the substrate and electrical component are vacuum processed sufficiently to redistribute the encapsulating material under the component.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: November 2, 1999
    Assignee: Micron Communications, Inc.
    Inventors: Ross S. Dando, Rickie C. Lake, Krishna Kumar