Patents by Inventor Roy E. Greeff

Roy E. Greeff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111673
    Abstract: Apparatus and methods are disclosed, including memory devices and systems. Example memory devices, systems and methods include a buffer interface to translate high speed data interactions on a host interface side into slower, wider data interactions on a DRAM interface side. The slower, and wider DRAM interface may be configured to substantially match the capacity of the narrower, higher speed host interface. In some examples, the buffer interface may be configured to provide multiple sub-channel interfaces each coupled to one or more regions within the memory structure and configured to facilitate data recovery in the event of a failure of some portion of the memory structure. Selected example memory devices, systems and methods include an individual DRAM die, or one or more stacks of DRAM dies coupled to a buffer die.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 4, 2024
    Inventors: Brent Keeth, Owen Fay, Chan H. Yoo, Roy E. Greeff, Matthew B. Leslie
  • Publication number: 20240070069
    Abstract: Apparatus and methods are disclosed, including memory devices and systems. Example memory devices, systems and methods include a buffer interface to translate high speed data interactions on a host interface side into slower, wider data interactions on a DRAM interface side. The slower, and wider DRAM interface may be configured to substantially match the capacity of the narrower, higher speed host interface. In some examples, the buffer interface may be configured to provide multiple sub-channel interfaces each coupled to one or more regions within the memory structure and configured to facilitate data recovery in the event of a failure of some portion of the memory structure. Selected example memory devices, systems and methods include an individual DRAM die, or one or more stacks of DRAM dies coupled to a buffer die.
    Type: Application
    Filed: June 28, 2023
    Publication date: February 29, 2024
    Inventors: Brent Keeth, Owen Fay, Chan H. Yoo, Roy E. Greeff, Matthew B. Leslie
  • Publication number: 20240063188
    Abstract: Apparatuses and methods for coupling semiconductor devices are disclosed. In a group of semiconductor devices (e.g., a stack of semiconductor devices), a signal is provided to a point of coupling at an intermediate semiconductor device of the group, and the signal is propagated away from the point of coupling over different (e.g., opposite) signal paths to other semiconductor devices of the group. Loading from the point of coupling at the intermediate semiconductor device to other semiconductor devices of a group may be more balanced than, for example, having a point of coupling at semiconductor device at an end of the group (e.g., a lowest semiconductor device of a stack, a highest semiconductor device of the stack, etc.) and providing a signal therefrom. The more balanced topology may reduce a timing difference between when signals arrive at each of the semiconductor devices.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Publication number: 20240045620
    Abstract: A memory subsystem architecture that includes two register clock driver (RCD) devices to increase a number of output drivers for signaling memories of the memory subsystem is described herein. In a two RCD device implementation, first and second RCD devices may contemporaneously provide first subchannel C/A information and second subchannel C/A information, respectively, to respective first and second group of memories of the memory subsystem responsive to a common clock signal. Because each of the first and second RCD devices operate responsive to the common clock signal, operation of the first and second RCD devices may be synchronized such that all subchannel driver circuits drive respective subchannel C/A information contemporaneously.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11868253
    Abstract: Memory devices, systems and methods include a buffer interface to translate high speed data interactions on a host interface side into slower, wider data interactions on a DRAM interface side. The slower, and wider DRAM interface may be configured to substantially match the capacity of the narrower, higher speed host interface. In some configurations, the buffer interface may be configured to provide multiple sub-channel interfaces each coupled to one or more regions within the memory structure and configured to facilitate data recovery in the event of a failure of some portion of the memory structure. Selected memory devices, systems and methods include an individual DRAM die, or one or more stacks of DRAM dies coupled to a buffer die.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: January 9, 2024
    Inventors: Brent Keeth, Owen Fay, Chan H. Yoo, Roy E. Greeff, Matthew B. Leslie
  • Patent number: 11862294
    Abstract: A memory subsystem architecture that includes clock signal routing architecture to split a clock signal to support two register clock driver (RCD) devices. The clock signal routing architecture may include clock signal splitter circuit that enables contemporaneous provision of a common clock signal to the two register clock driver devices. The clock signal splitter circuit may have three legs: a first leg to receive the clock signal from an external bus, and two similar legs to route the clock signal to the RCD devices.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: January 2, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11860731
    Abstract: Methods, systems, and devices for channel modulation for a memory device are described. A system may include a memory device and a host device coupled with the memory device. The system may be configured to communicate a first signal modulated using a first modulation scheme and communicate a second signal that is based on the first signal and that is modulated using a second modulation scheme. The first modulation scheme may include a first quantity of voltage levels that span a first range of voltages, and the second modulation scheme may include a second quantity of voltage levels that span a second range of voltages different than (e.g., smaller than) the first range of voltages. The first signal may include write data carried over a data channel, and the second signal may include error detection information based on the write data that is carried over an error detection channel.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: January 2, 2024
    Inventors: Martin Brox, Peter Mayer, Wolfgang Anton Spirkl, Thomas Hein, Michael Dieter Richter, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11837580
    Abstract: Apparatuses and methods for coupling semiconductor devices are disclosed. In a group of semiconductor devices (e.g., a stack of semiconductor devices), a signal is provided to a point of coupling at an intermediate semiconductor device of the group, and the signal is propagated away from the point of coupling over different (e.g., opposite) signal paths to other semiconductor devices of the group. Loading from the point of coupling at the intermediate semiconductor device to other semiconductor devices of a group may be more balanced than, for example, having a point of coupling at semiconductor device at an end of the group (e.g., a lowest semiconductor device of a stack, a highest semiconductor device of the stack, etc.) and providing a signal therefrom. The more balanced topology may reduce a timing difference between when signals arrive at each of the semiconductor devices.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: December 5, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11809715
    Abstract: Apparatuses and methods for multi-level communication architectures are disclosed herein. An example apparatus may include a driver circuit configured to convert a plurality of bitstreams into a plurality of multilevel signals. A count of the plurality of bitstreams is greater than count of the plurality of multilevel signals. The driver circuit further configured to drive the plurality of multilevel signals onto a plurality of signal lines using individual drivers. A driver of the individual drivers is configured to drive more than two voltages.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: November 7, 2023
    Inventors: Timothy Hollis, Roy E. Greeff
  • Patent number: 11797229
    Abstract: A memory subsystem architecture that includes two register clock driver (RCD) devices to increase a number of output drivers for signaling memories of the memory subsystem is described herein. In a two RCD device implementation, first and second RCD devices may contemporaneously provide first subchannel C/A information and second subchannel C/A information, respectively, to respective first and second group of memories of the memory subsystem responsive to a common clock signal. Because each of the first and second RCD devices operate responsive to the common clock signal, operation of the first and second RCD devices may be synchronized such that all subchannel driver circuits drive respective subchannel C/A information contemporaneously.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: October 24, 2023
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11675728
    Abstract: Methods, systems, and apparatuses related to configured dual register clock driver (RCD) devices on a single memory subsystem using different configuration information are described. In some examples, configuration of the two RCD devices with different configuration information may include use of a serial data bus to receive and store first RCD configuration data, which is provided to both of the RCD devices to configure one or more parameters of each respective RCD device. One of the RCD devices may receive second configuration data via a command and address bus to independently update the one or more configuration parameters of one of the two RCD devices.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: June 13, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11626145
    Abstract: Embodiments of the disclosure include signal processing methods to reduce crosstalk between signal lines of a channel bus using feed forward equalizers (FFEs) configured smear pulse response energy transmitted on signal lines of the channel to reduce pulse edge rates. The coefficients for the FFE may be based on crosstalk interference characteristics. Smearing or spreading pulse response energy across a longer time period using a FFE increases inter-symbol interference (ISI). To counter increased inter-symbol interference caused by smearing pulse response energy, receivers configured to recover symbol data transmitted on the channel bus may each include respective decision-feedback equalizers (DFEs) that are configured to filter ISI from transmitted symbols based on previous symbol decisions of the channel. The combination of the FFE configured to smear pulse responses and the DFE to filter ISI may improve data eye quality for recovery of transmitted data on a channel bus when crosstalk dominates noise.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 11, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Publication number: 20230105886
    Abstract: Apparatuses and methods for coupling semiconductor devices are disclosed. Terminals (e.g., die pads) of a plurality of semiconductor devices may be coupled in a daisy chain manner through conductive structures that couple one or more terminals of a semiconductor device to two conductive bond pads. The conductive structures may be included in a redistribution layer (RDL) structure. The RDL structure may have a “U” shape in some embodiments of the disclosure. Each end of the “U” shape may be coupled to a respective one of the two conductive bond pads, and the terminal of the semiconductor device may be coupled to the RDL structure. The conductive bond pads of a semiconductor device may be coupled to conductive bond pads of other semiconductor devices by conductors (e.g., bond wires). As a result, the terminals of the semiconductor devices may be coupled in a daisy chain manner through the RDL structures, conductive bond pads, and conductors.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Publication number: 20230014013
    Abstract: A memory subsystem architecture that includes clock signal routing architecture to split a clock signal to support two register clock driver (RCD) devices. The clock signal routing architecture may include clock signal splitter circuit that enables contemporaneous provision of a common clock signal to the two register clock driver devices. The clock signal splitter circuit may have three legs: a first leg to receive the clock signal from an external bus, and two similar legs to route the clock signal to the RCD devices.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 19, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11527508
    Abstract: Apparatuses and methods for coupling semiconductor devices are disclosed. Terminals (e.g., die pads) of a plurality of semiconductor devices may be coupled in a daisy chain manner through conductive structures that couple one or more terminals of a semiconductor device to two conductive bond pads. The conductive structures may be included in a redistribution layer (RDL) structure. The RDL structure may have a “U” shape in some embodiments of the disclosure. Each end of the “U” shape may be coupled to a respective one of the two conductive bond pads, and the terminal of the semiconductor device may be coupled to the RDL structure. The conductive bond pads of a semiconductor device may be coupled to conductive bond pads of other semiconductor devices by conductors (e.g., bond wires). As a result, the terminals of the semiconductor devices may be coupled in a daisy chain manner through the RDL structures, conductive bond pads, and conductors.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: December 13, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Publication number: 20220342814
    Abstract: Apparatus and methods are disclosed, including memory devices and systems. Example memory devices, systems and methods include a buffer interface to translate high speed data interactions on a host interface side into slower, wider data interactions on a DRAM interface side. The slower, and wider DRAM interface may be configured to substantially match the capacity of the narrower, higher speed host interface. In some examples, the buffer interface may be configured to provide multiple sub-channel interfaces each coupled to one or more regions within the memory structure and configured to facilitate data recovery in the event of a failure of some portion of the memory structure. Selected example memory devices, systems and methods include an individual DRAM die, or one or more stacks of DRAM dies coupled to a buffer die.
    Type: Application
    Filed: July 11, 2022
    Publication date: October 27, 2022
    Inventors: Brent Keeth, Owen Fay, Chan H. Yoo, Roy E. Greeff, Matthew B. Leslie
  • Publication number: 20220334915
    Abstract: Methods, systems, and devices for channel modulation for a memory device are described. A system may include a memory device and a host device coupled with the memory device. The system may be configured to communicate a first signal modulated using a first modulation scheme and communicate a second signal that is based on the first signal and that is modulated using a second modulation scheme. The first modulation scheme may include a first quantity of voltage levels that span a first range of voltages, and the second modulation scheme may include a second quantity of voltage levels that span a second range of voltages different than (e.g., smaller than) the first range of voltages. The first signal may include write data carried over a data channel, and the second signal may include error detection information based on the write data that is carried over an error detection channel.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Inventors: Martin Brox, Peter Mayer, Wolfgang Anton Spirkl, Thomas Hein, Michael Dieter Richter, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11468931
    Abstract: A memory subsystem architecture that includes clock signal routing architecture to split a clock signal to support two register clock driver (RCD) devices. The clock signal routing architecture may include clock signal splitter circuit that enables contemporaneous provision of a common clock signal to the two register clock driver devices. The clock signal splitter circuit may have three legs: a first leg to receive the clock signal from an external bus, and two similar legs to route the clock signal to the RCD devices.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: October 11, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11409595
    Abstract: Methods, systems, and devices for channel modulation for a memory device are described. A system may include a memory device and a host device coupled with the memory device. The system may be configured to communicate a first signal modulated using a first modulation scheme and communicate a second signal that is based on the first signal and that is modulated using a second modulation scheme. The first modulation scheme may include a first quantity of voltage levels that span a first range of voltages, and the second modulation scheme may include a second quantity of voltage levels that span a second range of voltages different than (e.g., smaller than) the first range of voltages. The first signal may include write data carried over a data channel, and the second signal may include error detection information based on the write data that is carried over an error detection channel.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: August 9, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Martin Brox, Peter Mayer, Wolfgang Anton Spirkl, Thomas Hein, Michael Dieter Richter, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11386004
    Abstract: Memory devices, systems and methods include a buffer interface to translate high speed data interactions on a host interface side into slower, wider data interactions on a DRAM interface side. The slower, and wider DRAM interface may be configured to substantially match the capacity of the narrower, higher speed host interface. In some configurations, the buffer interface may be configured to provide multiple sub-channel interfaces each coupled to one or more regions within the memory structure and configured to facilitate data recovery in the event of a failure of some portion of the memory structure. Selected memory devices, systems and methods include an individual DRAM die, or one or more stacks of DRAM dies coupled to a buffer die.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: July 12, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Brent Keeth, Owen Fay, Chan H. Yoo, Roy E. Greeff, Matthew B. Leslie