Patents by Inventor Roy Edward Meade

Roy Edward Meade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11424830
    Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: August 23, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden
  • Patent number: 11405125
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 2, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Patent number: 11394465
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: July 19, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
  • Publication number: 20220224433
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Application
    Filed: January 24, 2022
    Publication date: July 14, 2022
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Publication number: 20220214509
    Abstract: A beam steering structure includes an alignment structure shaped to receive and align an optical fiber such that an axis of a core of the optical fiber is oriented in a first direction. The beam steering structure includes an end portion having an angled optical surface oriented at a non-zero angle relative to the first direction. The end portion is shaped and positioned so that light propagating along the first direction from the optical fiber passes through the end portion to reach the angled optical surface. A reflecting system is positioned on the angled optical surface across the first direction. The reflecting system is configured to reflect incident light propagating along the first direction into a first reflected beam of a first polarization and a second reflected beam of a second polarization. The first and second reflected beams are directed into first and second optical communication channels, respectively.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventors: John Fini, Roy Edward Meade, Derek Van Orden, Mark Wade
  • Publication number: 20220214497
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Application
    Filed: March 22, 2022
    Publication date: July 7, 2022
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Publication number: 20220171142
    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.
    Type: Application
    Filed: February 14, 2022
    Publication date: June 2, 2022
    Inventors: Alexandra Wright, Mark Wade, Chen Sun, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Roy Edward Meade, Derek Van Orden
  • Publication number: 20220163723
    Abstract: A multi-MCP (multi-chip package) module assembly includes a plate, an integrated optical fiber shuffle disposed on the plate, a first MCP disposed on the plate, a second MCP disposed on the plate, a first optical fiber jumper disposed on the plate, and a second optical fiber jumper disposed on the plate. The first optical fiber jumper optically connects the first MCP to the integrated optical fiber shuffle. The second optical fiber jumper optically connects the second MCP to the integrated optical fiber shuffle. The integrated optical fiber shuffle includes an optical network configured to direct optical signals to and from each of the first optical fiber jumper and the second optical fiber jumper.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventor: Roy Edward Meade
  • Publication number: 20220166533
    Abstract: A network switch system-in-package includes a carrier substrate with a network switch chip and a plurality of photonic input/output modules disposed on the carrier substrate. Each of the plurality of photonic input/output modules includes a module substrate and a plurality of photonic chip pods disposed on the module substrate. Each photonic chip pod includes a pod substrate with a photonic input/output chiplet and a gearbox chiplet attached to the pod substrate. The photonic input/output chiplet includes a parallel electrical interface, a photonic interface, and a plurality of optical macros implemented between the photonic interface and the parallel electrical interface. The gearbox chiplet electrically connects with the parallel electrical interface of the photonic input/output chiplet and a serial electrical interface of the network switch chip.
    Type: Application
    Filed: November 16, 2021
    Publication date: May 26, 2022
    Inventors: Vladimir Stojanovic, Hugo Saleh, Roy Edward Meade
  • Publication number: 20220148627
    Abstract: A computer memory system includes an electro-optical chip, an electrical fanout chip electrically connected to an electrical interface of the electro-optical chip, and at least one dual in-line memory module (DIMM) slot electrically connected to the electrical fanout chip. A photonic interface of the electro-optical chip is optically connected to an optical link. The electro-optical chip includes at least one optical macro that converts outgoing electrical data signals into outgoing optical data signals for transmission through the optical link. The optical macro also converts incoming optical data signals from the optical link into incoming electrical data signals and transmits the incoming electrical data signals to the electrical fanout chip. The electrical fanout chip directs bi-directional electrical data communication between the electro-optical chip and a dynamic random access memory (DRAM) DIMM corresponding to the at least one DIMM slot.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Roy Edward Meade, Vladimir Stojanovic, Chen Sun, Mark Wade, Hugo Saleh, Charles Wuischpard
  • Publication number: 20220107463
    Abstract: A package assembly includes a silicon photonics chip having an optical waveguide exposed at a first side of the chip and an optical fiber coupling region formed along the first side of the chip. The package assembly includes a mold compound structure formed to extend around second, third, and fourth sides of the chip. The mold compound structure has a vertical thickness substantially equal to a vertical thickness of the chip. The package assembly includes a redistribution layer formed over the chip and over a portion of the mold compound structure. The redistribution layer includes electrically conductive interconnect structures to provide fanout of electrical contacts on the chip to corresponding electrical contacts on the redistribution layer. The redistribution layer is formed to leave the optical fiber coupling region exposed. An optical fiber is connected to the optical fiber coupling region in optical alignment with the optical waveguide within the chip.
    Type: Application
    Filed: November 1, 2021
    Publication date: April 7, 2022
    Inventors: Shahab Ardalan, Michael Davenport, Roy Edward Meade
  • Patent number: 11280970
    Abstract: A beam steering structure includes an alignment structure shaped to receive and align an optical fiber such that an axis of a core of the optical fiber is oriented in a first direction. The beam steering structure includes an end portion having an angled optical surface oriented at a non-zero angle relative to the first direction. The end portion is shaped and positioned so that light propagating along the first direction from the optical fiber passes through the end portion to reach the angled optical surface. A reflecting system is positioned on the angled optical surface across the first direction. The reflecting system is configured to reflect incident light propagating along the first direction into a first reflected beam of a first polarization and a second reflected beam of a second polarization. The first and second reflected beams are directed into first and second optical communication channels, respectively.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 22, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Derek Van Orden, Mark Wade
  • Patent number: 11280959
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: March 22, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Patent number: 11249260
    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: February 15, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Alexandra Wright, Mark Wade, Chen Sun, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Roy Edward Meade, Derek Van Orden
  • Publication number: 20220045780
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Application
    Filed: August 24, 2021
    Publication date: February 10, 2022
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Patent number: 11233596
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 25, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Patent number: 11233580
    Abstract: A computer memory system includes an electro-optical chip, an electrical fanout chip electrically connected to an electrical interface of the electro-optical chip, and at least one dual in-line memory module (DIMM) slot electrically connected to the electrical fanout chip. A photonic interface of the electro-optical chip is optically connected to an optical link. The electro-optical chip includes at least one optical macro that converts outgoing electrical data signals into outgoing optical data signals for transmission through the optical link. The optical macro also converts incoming optical data signals from the optical link into incoming electrical data signals and transmits the incoming electrical data signals to the electrical fanout chip. The electrical fanout chip directs bi-directional electrical data communication between the electro-optical chip and a dynamic random access memory (DRAM) DIMM corresponding to the at least one DIMM slot.
    Type: Grant
    Filed: February 14, 2021
    Date of Patent: January 25, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Vladimir Stojanovic, Chen Sun, Mark Wade, Hugo Saleh, Charles Wuischpard
  • Patent number: 11163120
    Abstract: A package assembly includes a silicon photonics chip having an optical waveguide exposed at a first side of the chip and an optical fiber coupling region formed along the first side of the chip. The package assembly includes a mold compound structure formed to extend around second, third, and fourth sides of the chip. The mold compound structure has a vertical thickness substantially equal to a vertical thickness of the chip. The package assembly includes a redistribution layer formed over the chip and over a portion of the mold compound structure. The redistribution layer includes electrically conductive interconnect structures to provide fanout of electrical contacts on the chip to corresponding electrical contacts on the redistribution layer. The redistribution layer is formed to leave the optical fiber coupling region exposed. An optical fiber is connected to the optical fiber coupling region in optical alignment with the optical waveguide within the chip.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 2, 2021
    Assignee: Ayar Labs, Inc.
    Inventors: Shahab Ardalan, Michael Davenport, Roy Edward Meade
  • Patent number: 11156773
    Abstract: A handle-integrated composite wafer assembly includes a handle wafer attached to a device wafer. The device wafer includes a device layer formed on a buried oxide layer. The device layer includes an optical resonator structure. The handle wafer includes a base layer and a layer of anti-reflective material disposed on a top side of the base layer. The base layer has a cavity extending into the base layer from the top side of the base layer. The cavity has at least one side surface and a bottom surface. The layer of anti-reflective material is substantially conformally disposed within the cavity on the at least one side surface and bottom surface of the cavity. The handle wafer is attached to the device wafer with the layer of anti-reflective material affixed to the buried oxide layer, and with the cavity substantially aligned with the optical resonator structure in the device layer.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: October 26, 2021
    Assignee: Ayar Labs, Inc.
    Inventors: Haiwei Lu, Chen Li, John Fini, Chong Zhang, Roy Edward Meade
  • Patent number: 11137548
    Abstract: A grating coupler reflector (retro reflector) is formed within a photonics chip and includes a vertical scattering region, an optical waveguide, and a reflector. The optical waveguide is optically coupled to the vertical scattering region. The reflector is positioned at an end of the optical waveguide. The reflector is configured to reflect light that propagates through the optical waveguide from the vertical scattering region back toward the vertical scattering region. The location of the grating coupler reflector on the photonics chip is determinable by scanning a light emitting active optical fiber over the chip and detecting when light is reflected back into the active optical fiber from the grating coupler reflector. The determined location of the grating coupler reflector on the photonics chip is usable as a reference location for aligning optical fiber(s) to corresponding optical grating couplers on the photonics chip.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: October 5, 2021
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Derek Van Orden, Forrest Sedgwick