Patents by Inventor Ru-Yi Su

Ru-Yi Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120132995
    Abstract: The present disclosure provides a semiconductor device that includes a transistor including a substrate, a source, a drain, and a gate, and a fuse stacked over the transistor. The fuse includes an anode contact coupled to the drain of the transistor, a cathode contact, and a resistor coupled to the cathode contact and the anode contact via a first Schottky diode and a second Schottky diode, respectively. A method of fabricating such semiconductor devices is also provided.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang Cheng, Ruey-Hsin Liu, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20120126334
    Abstract: The present disclosure provides a semiconductor device that includes a substrate having a resistor element region and a transistor region, a floating substrate in the resistor element region of the substrate, an epitaxial layer disposed over the floating substrate, and an active region defined in the epitaxial layer, the active region surrounded by isolation structures. The device further includes a resistor block disposed over an isolation structure, and a dielectric layer disposed over the resistor block, the isolation structures, and the active region. A method of fabricating such semiconductor devices is also provided.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Yi Su, Chia-Chin Shen, Yu Chuan Liang, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20120119265
    Abstract: The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20120091529
    Abstract: Provided is a semiconductor device. The semiconductor device includes a resistor and a voltage protection device. The resistor has a spiral shape. The resistor has a first portion and a second portion. The voltage protection device includes a first doped region that is electrically coupled to the first portion of the resistor. The voltage protection device includes a second doped region that is electrically coupled to the second portion of the resistor. The first and second doped regions have opposite doping polarities.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 19, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang Cheng, Ruey-Hsin Liu, Chih-Wen (Albert) Yao, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 8158475
    Abstract: A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type overlying the semiconductor substrate and laterally adjoining the first well region; a gate dielectric extending from over the first well region to over the second well region; a drain region in the second well region; a source region on an opposite side of the gate dielectric than the drain region; and a gate electrode on the gate dielectric. The gate electrode includes a first portion directly over the second well region, and a second portion directly over the first well region. The first portion has a first impurity concentration lower than a second impurity concentration of the second portion.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 17, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ru-Yi Su, Puo-Yu Chiang, Jeng Gong, Tsung-Yi Huang, Chun-Lin Tsai, Chien-Chih Chou
  • Patent number: 8159029
    Abstract: A semiconductor device includes a semiconductor substrate, a source region and a drain region formed in the substrate, a gate structure formed on the substrate disposed between the source and drain regions, and a first isolation structure formed in the substrate between the gate structure and the drain region, the first isolation structure including projections that are located proximate to an edge of the drain region. Each projection includes a width measured in a first direction along the edge of the drain region and a length measured in a second direction perpendicular to the first direction, and adjacent projections are spaced a distance from each other.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: April 17, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Puo-Yu Chiang, Jeng Gong, Tsung-Yi Huang, Chun-Lin Tsai, Chien-Chih Chou
  • Publication number: 20110241114
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS) and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. One portion of the second well surrounds the source and the other portion of the second well extends laterally from the first portion in the first well.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 6, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: RU-YI SU, Fu-Chih Yang, Chun Lin Tsai, Ker-Hsiao Huo, Chia-Chin Shen, Eric Huang, Chih-Chang Cheng, Ruey-Hsin Liu, Hsiao-Chin Tuan
  • Publication number: 20110008944
    Abstract: A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type overlying the semiconductor substrate and laterally adjoining the first well region; a gate dielectric extending from over the first well region to over the second well region; a drain region in the second well region; a source region on an opposite side of the gate dielectric than the drain region; and a gate electrode on the gate dielectric. The gate electrode includes a first portion directly over the second well region, and a second portion directly over the first well region. The first portion has a first impurity concentration lower than a second impurity concentration of the second portion.
    Type: Application
    Filed: September 10, 2010
    Publication date: January 13, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Puo-Yu Chiang, Jeng Gong, Tsung-Yi Huang, Chun-Lin Tsai, Chien-Chih Chou
  • Patent number: 7816744
    Abstract: A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type overlying the semiconductor substrate and laterally adjoining the first well region; a gate dielectric extending from over the first well region to over the second well region; a drain region in the second well region; a source region on an opposite side of the gate dielectric than the drain region; and a gate electrode on the gate dielectric. The gate electrode includes a first portion directly over the second well region, and a second portion directly over the first well region. The first portion has a first impurity concentration lower than a second impurity concentration of the second portion.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: October 19, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Puo-Yu Chiang, Jeng Gong, Tsung-Yi Huang, Chun-Lin Tsai, Chien-Chih Chou
  • Publication number: 20100096697
    Abstract: A semiconductor device includes a semiconductor substrate, a source region and a drain region formed in the substrate, a gate structure formed on the substrate disposed between the source and drain regions, and a first isolation structure formed in the substrate between the gate structure and the drain region, the first isolation structure including projections that are located proximate to an edge of the drain region. Each projection includes a width measured in a first direction along the edge of the drain region and a length measured in a second direction perpendicular to the first direction, and adjacent projections are spaced a distance from each other.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Yi Su, Pou-Yu Chiang, Jeng Gong, Tsung-Yi Huang, Chun Lin Tsai, Chien-Chih Chou
  • Publication number: 20100006934
    Abstract: A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type overlying the semiconductor substrate and laterally adjoining the first well region; a gate dielectric extending from over the first well region to over the second well region; a drain region in the second well region; a source region on an opposite side of the gate dielectric than the drain region; and a gate electrode on the gate dielectric. The gate electrode includes a first portion directly over the second well region, and a second portion directly over the first well region. The first portion has a first impurity concentration lower than a second impurity concentration of the second portion.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Inventors: Ru-Yi Su, Puo-Yu Chiang, Jeng Gong, Tsung-Yi Huang, Chun-Lin Tsai, Chien-Chih Chou
  • Publication number: 20090051000
    Abstract: A semiconductor device structure is provided. By placing an insulating dielectric material in the drift region of a device to modulate the electric field distribution and current flow in the drift region, the breakdown voltage of the device is increased while the turn-on impedance of the device is reduced.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 26, 2009
    Inventors: JENG GONG, Wen-Chun Chung, Ru-Yi Su, Fu-Hsiung Yang