Patents by Inventor Ru-Yi Su
Ru-Yi Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9224827Abstract: Provided is a semiconductor device. The semiconductor device includes a resistor and a voltage protection device. The resistor has a spiral shape. The resistor has a first portion and a second portion. The voltage protection device includes a first doped region that is electrically coupled to the first portion of the resistor. The voltage protection device includes a second doped region that is electrically coupled to the second portion of the resistor. The first and second doped regions have opposite doping polarities.Type: GrantFiled: November 7, 2013Date of Patent: December 29, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Chang Cheng, Ruey-Hsin Liu, Chih-Wen Yao, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai
-
Patent number: 9214547Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.Type: GrantFiled: October 11, 2013Date of Patent: December 15, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
-
Patent number: 9190476Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.Type: GrantFiled: May 6, 2015Date of Patent: November 17, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ker Hsiao Huo, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng
-
Patent number: 9190535Abstract: A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.Type: GrantFiled: April 30, 2014Date of Patent: November 17, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
-
Publication number: 20150263164Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.Type: ApplicationFiled: May 6, 2015Publication date: September 17, 2015Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Ker Hsiao HUO, Ru-Yi SU, Fu-Chih YANG, Chun Lin TSAI, Chih-Chang CHENG
-
Patent number: 9111849Abstract: Provided is a high voltage semiconductor device. The semiconductor device includes a doped well located in a substrate that is oppositely doped. The semiconductor device includes a dielectric structure located on the doped well. A portion of the doped well adjacent the dielectric structure has a higher doping concentration than a remaining portion of the doped well. The semiconductor device includes an elongate polysilicon structure located on the dielectric structure. The elongate polysilicon structure has a length L. The portion of the doped well adjacent the dielectric structure is electrically coupled to a segment of the elongate polysilicon structure that is located away from a midpoint of the elongate polysilicon structure by a predetermined distance that is measured along the elongate polysilicon structure. The predetermined distance is in a range from about 0*L to about 0.1*L.Type: GrantFiled: July 18, 2014Date of Patent: August 18, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
-
Patent number: 9035379Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.Type: GrantFiled: July 17, 2014Date of Patent: May 19, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ker Hsiao Huo, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng
-
Publication number: 20150072496Abstract: A method for fabricating a high voltage semiconductor transistor includes growing a first well region over a substrate having a first conductivity type, the first well region having a second type of conductivity. First, second and third portions of a second well region having the first type of conductivity are doped into the first well region. A first insulating layer is grown in and over the first well portion within the second well region. A second insulating layer is grown on the substrate over the third portion of the second well region. An anti-punch through region is doped into the first well region. A gate structure is formed on the substrate. A source region is formed in the first portion of the second well region on an opposite side of the gate structure from the first insulating layer. A drain region is formed in the first well region.Type: ApplicationFiled: November 5, 2014Publication date: March 12, 2015Inventors: Ker Hsiao HUO, Chih-Chang CHENG, Ru-Yi SU, Jen-Hao YEH, Fu-Chih YANG, Chun Lin TSAI
-
Patent number: 8969913Abstract: A high voltage laterally diffused metal-oxide-semiconductor (HV LDMOS) device, particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate having at least one highly doped buried portion, a first doped well grown over the substrate, a gate structure formed on the first well, a source and a drain formed on either side of the gate structure, and a second doped well having a U-shaped cross section formed in the first well. A portion of the drain is formed over the first well outside of the second well.Type: GrantFiled: November 9, 2012Date of Patent: March 3, 2015Assignee: Taiwan Semiconductor Maufacturing Company, Ltd.Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
-
Publication number: 20150028345Abstract: A transistor includes a substrate, a channel layer over the substrate, an active layer over the channel layer, a metal diffusion barrier over the active layer, and a gate over the metal diffusion barrier. The active layer has a band gap discontinuity with the channel layer.Type: ApplicationFiled: July 23, 2013Publication date: January 29, 2015Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: King-Yuen WONG, Po-Chih CHEN, Chen-Ju YU, Fu-Chih YANG, Jiun-Lei Jerry YU, Fu-Wei YAO, Ru-Yi SU, Yu-Syuan LIN
-
Publication number: 20140327075Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.Type: ApplicationFiled: July 17, 2014Publication date: November 6, 2014Inventors: Ker Hsiao HUO, Ru-Yi SU, Fu-Chih YANG, Chun Lin TSAI, Chih-Chang CHENG
-
Publication number: 20140322889Abstract: Provided is a high voltage semiconductor device. The semiconductor device includes a doped well located in a substrate that is oppositely doped. The semiconductor device includes a dielectric structure located on the doped well. A portion of the doped well adjacent the dielectric structure has a higher doping concentration than a remaining portion of the doped well. The semiconductor device includes an elongate polysilicon structure located on the dielectric structure. The elongate polysilicon structure has a length L. The portion of the doped well adjacent the dielectric structure is electrically coupled to a segment of the elongate polysilicon structure that is located away from a midpoint of the elongate polysilicon structure by a predetermined distance that is measured along the elongate polysilicon structure. The predetermined distance is in a range from about 0*L to about 0.1*L.Type: ApplicationFiled: July 18, 2014Publication date: October 30, 2014Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
-
Publication number: 20140235028Abstract: Provided is a high voltage semiconductor device that includes a PIN diode structure formed in a substrate. The PIN diode includes an intrinsic region located between a first doped well and a second doped well. The first and second doped wells have opposite doping polarities and greater doping concentration levels than the intrinsic region. The semiconductor device includes an insulating structure formed over a portion of the first doped well. The semiconductor device includes an elongate resistor device formed over the insulating structure. The resistor device has first and second portions disposed at opposite ends of the resistor device, respectively. The semiconductor device includes an interconnect structure formed over the resistor device. The interconnect structure includes: a first contact that is electrically coupled to the first doped well and a second contact that is electrically coupled to a third portion of the resistor located between the first and second portions.Type: ApplicationFiled: February 13, 2014Publication date: August 21, 2014Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
-
Publication number: 20140231884Abstract: A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.Type: ApplicationFiled: April 30, 2014Publication date: August 21, 2014Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
-
Patent number: 8803232Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.Type: GrantFiled: July 20, 2011Date of Patent: August 12, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ker Hsiao Huo, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng
-
Patent number: 8786050Abstract: Provided is a high voltage semiconductor device. The semiconductor device includes a doped well located in a substrate that is oppositely doped. The semiconductor device includes a dielectric structure located on the doped well. A portion of the doped well adjacent the dielectric structure has a higher doping concentration than a remaining portion of the doped well. The semiconductor device includes an elongate polysilicon structure located on the dielectric structure. The elongate polysilicon structure has a length L. The portion of the doped well adjacent the dielectric structure is electrically coupled to a segment of the elongate polysilicon structure that is located away from a midpoint of the elongate polysilicon structure by a predetermined distance that is measured along the elongate polysilicon structure. The predetermined distance is in a range from about 0*L to about 0.1*L.Type: GrantFiled: May 4, 2011Date of Patent: July 22, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
-
Publication number: 20140139282Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.Type: ApplicationFiled: January 28, 2014Publication date: May 22, 2014Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
-
Publication number: 20140110782Abstract: The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.Type: ApplicationFiled: January 13, 2014Publication date: April 24, 2014Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
-
Patent number: 8704279Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.Type: GrantFiled: May 25, 2012Date of Patent: April 22, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun Lin Tsai
-
Patent number: 8680616Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes: a drift region having a first doping polarity formed in a substrate; a doped extension region formed in the drift region and having a second doping polarity opposite the first doping polarity, the doped extension region including a laterally-extending component; a dielectric structure formed over the drift region, the dielectric structure being separated from the doped extension region by a portion of the drift region; a gate structure formed over a portion of the dielectric structure and a portion of the doped extension region; and a doped isolation region having the second doping polarity, the doped isolation region at least partially surrounding the drift region and the doped extension region.Type: GrantFiled: December 3, 2010Date of Patent: March 25, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Ker Hsiao Huo, Chih-Chang Cheng, Ruey-Hsin Liu