Patents by Inventor Ruqiang Bao

Ruqiang Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180212040
    Abstract: A method of forming a vertical fin field effect transistor device, including, forming one or more vertical fins with a hardmask cap on each vertical fin on a substrate, forming a fin liner on the one or more vertical fins and hardmask caps, forming a sacrificial liner on the fin liner, and forming a bottom spacer layer on the sacrificial liner.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 26, 2018
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, ChoongHyun Lee
  • Patent number: 10032856
    Abstract: A capacitive device includes a first electrode comprising a nanosheet stack, and a second electrode comprising a nanosheet stack, the second electrode arranged substantially parallel to the first electrode. A first conductive contact is arranged on a basal end of the first electrode, and a second conductive contact arranged on a basal end of the second electrode.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Zhenxing Bi, Kangguo Cheng, Zheng Xu
  • Publication number: 20180204839
    Abstract: A semiconductor device is provided and has an n-channel field effect transistor (nFET) bottom junction and a p-channel field effect transistor (pFET) bottom junction. The semiconductor device includes first and second fin formations operably disposed in the nFET and pFET bottom junctions, respectively. The semiconductor device can also include an nFET metal gate layer deposited for oxygen absorption onto a high-k dielectric layer provided about the first fin formation in the nFET bottom junction and onto a pFET metal gate layer provided about the second fin formation in the pFET bottom junction. Alternatively, the semiconductor device can include an oxygen scavenging layer deposited onto the pFET metal gate layer about the second fin formation in the pFET bottom junction and, with the pFET metal gate layer deposited onto the nFET metal gate layer about the first fin formation in the nFET bottom junction, onto the pFET metal gate layer in the nFET bottom junction.
    Type: Application
    Filed: January 16, 2017
    Publication date: July 19, 2018
    Inventors: RUQIANG BAO, HEMANTH JAGANNATHAN, PAUL JAMISON, CHOONGHYUN LEE, VIJAY NARAYANAN
  • Patent number: 10020255
    Abstract: Semiconductor devices including super via structures and BEOL processes for forming the same, according to embodiments of the invention, generally include removing selected portions of a nitride cap layer intermediate interconnect levels, wherein the selected portions correspond to the regions where the super via structure is to be formed and where underlying overlay alignment markers are located.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: July 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Joe Lee, Yann Mignot, Hosadurga Shobha, Junli Wang, Yongan Xu
  • Patent number: 10020254
    Abstract: Semiconductor devices including super via structures and BEOL processes for forming the same, according to embodiments of the invention, generally include removing selected portions of a nitride cap layer intermediate interconnect levels, wherein the selected portions correspond to the regions where the super via structure is to be formed and where underlying overlay alignment markers are located.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: July 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Joe Lee, Yann Mignot, Hosadurga Shobha, Junli Wang, Yongan Xu
  • Patent number: 10020378
    Abstract: Methods of forming a semiconductor device include laterally etching a dummy gate to recess the dummy gate underneath a spacer layer, such that the spacer layer overhangs the dummy gate. A sidewall of the dummy gate is nitridized. The dummy gate is etched away without removing the nitridized sidewall.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: July 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Dechao Guo, Zuoguang Liu
  • Publication number: 20180190782
    Abstract: One example of an apparatus includes a conducting channel region. The conducting channel region includes a plurality of epitaxially grown, in situ doped conducting channels arranged in a spaced apart relation relative to each other. A source positioned at a first end of the conducting channel region, and a drain positioned at a second end of the conducting channel region. A gate surrounds all sides of the conducting channel region and fills in spaces between the plurality of epitaxially grown, in situ doped conducting channels.
    Type: Application
    Filed: January 4, 2017
    Publication date: July 5, 2018
    Inventors: Ruqiang Bao, Michael A. Guillorn, Terence Hook, Robert R. Robison, Reinaldo Vega, Tenko Yamashita
  • Publication number: 20180190784
    Abstract: Semiconductor devices include at least one semiconductor fin in each of a first region and a second region. A first work function stack that includes a bottom layer, a middle layer, and a top layer is formed over the at least one semiconductor fin in the first region. A second work function stack that includes a first layer and a second layer is formed over the at least one semiconductor fin in the second region. The first layer is continuous with the bottom layer of the first work function stack and the second layer is continuous with the middle layer of the first work function stack but has a smaller thickness than the middle layer. A continuous gate is formed over the first and the second work function stack.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan
  • Patent number: 10008417
    Abstract: A method of forming multiple vertical transport fin field effect transistors (VT FinFETs) having different channel lengths, including, forming a vertical fin on a first region of a substrate and a vertical fin on a second region of the substrate, forming a cover block on the vertical fin on the second region of the substrate, forming a first bottom source/drain on the first region of the substrate, wherein the first bottom source/drain covers a lower portion of the vertical fin on the first region, removing the cover block, and forming a second bottom source/drain in the second region of the substrate, wherein the second bottom source/drain is below the surface of the substrate, wherein the second bottom source/drain does not cover a lower portion of the vertical fin on the second region.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Choonghyun Lee, Shogo Mochizuki, Chun W. Yeung
  • Patent number: 10002791
    Abstract: A method is presented for forming a device having multiple field effect transistors (FETs) with each FET having a different work function. In particular, the method includes forming multiple microchips in which each FET has a different threshold voltage (Vt) or work-function. In one embodiment, four FETs are formed over a semiconductor substrate. Each FET has a source, drain and a gate electrode. Each gate electrode is processed independently to provide a substantially different threshold voltage.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, ChoongHyun Lee
  • Patent number: 10002937
    Abstract: Semiconductor devices and methods of forming the same include forming a work function stack over semiconductor fins in a first region and a second region, the work function stack having a bottom layer, a middle layer, and a top layer. The work function stack is etched to remove the top layer and to decrease a thickness of the middle layer in the second region, leaving a portion of the middle layer and the bottom layer intact. A gate is formed over the semiconductor fins in the first and second regions.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 19, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan
  • Patent number: 9997519
    Abstract: A method of forming a semiconductor structure includes depositing a first work function metal layer in nanosheet channel stacks for first and second CMOS structure each including a first nanosheet channel stack for an nFET and a second nanosheet channel stack for a pFET. The method also includes patterning to remove the first work function metal layer surrounding nanosheet channels in the first nanosheet channel stack of the first CMOS structure and nanosheet channels in the second nanosheet channel stack of the second CMOS structure. The method further includes depositing a second work function metal layer to surround the nanosheet channels in the first nanosheet channel stack of the first CMOS structure and the nanosheet channels in the second nanosheet channel stack of the second CMOS structure. The first CMOS structure has a first threshold voltage and the second CMOS structure has a second threshold voltage.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Michael A. Guillorn, Vijay Narayanan
  • Patent number: 9997518
    Abstract: In one embodiment, a method of making a semiconductor device includes: forming a substrate; forming an nFET transistor and a pFET transistor on the substrate; wherein forming the nFET transistor comprises first depositing several first layers in and along the inner sidewalls of a trench on the substrate, then depositing a conductive metal comprising cobalt on the several first layers; wherein forming the pFET transistor comprises first depositing several second layers in and along the inner sidewalls of a trench on the substrate, then depositing a conductive metal comprising cobalt on the several second layers.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: June 12, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Keith Kwong Hon Wong
  • Publication number: 20180122952
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures that reduce shallow trench isolation (STI) undercutting, floating gates, and gate voids without degrading epitaxy quality. The method includes forming a first and second semiconductor fin on a substrate. A buffer layer is formed on a surface of the substrate between the first and second semiconductor fins and a semiconducting layer is formed on the buffer layer. The buffer layer is selectively removed and replaced with a dielectric layer. A first gate is formed over a first channel region of the first semiconductor fin and a second gate is formed over a second channel region of the first semiconductor fin. Source and drain epitaxy regions are selectively formed on surfaces of the first gate.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 3, 2018
    Inventors: Ruqiang Bao, Zhenxing Bi, Kangguo Cheng, Zheng Xu
  • Publication number: 20180122813
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 3, 2018
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Patent number: 9960272
    Abstract: Embodiments are directed to a method and resulting structures for a vertical field effect transistor (VFET) having a reduced bottom contact resistance. A multilayered bottom doped region having alternating doped layers and doped sacrificial layers is formed on a substrate. One or more cavities are formed by removing portions of the doped sacrificial layers. A bottom contact is formed over the multilayered bottom doped region. The bottom contact includes one or more conductive flanges that fill the cavities.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: May 1, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, ChoongHyun Lee, Shogo Mochizuki, Hemanth Jagannathan
  • Patent number: 9960161
    Abstract: In one embodiment, a method of making a semiconductor device includes: forming a substrate; forming an nFET transistor and a pFET transistor on the substrate; wherein forming the nFET transistor comprises first depositing several first layers in and along the inner sidewalls of a trench on the substrate, then depositing a conductive metal comprising cobalt on the several first layers; wherein forming the pFET transistor comprises first depositing several second layers in and along the inner sidewalls of a trench on the substrate, then depositing a conductive metal comprising cobalt on the several second layers.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: May 1, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Keith Kwong Hon Wong
  • Publication number: 20180114863
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures that reduce shallow trench isolation (STI) undercutting, floating gates, and gate voids without degrading epitaxy quality. The method includes forming a first and second semiconductor fin on a substrate. A buffer layer is formed on a surface of the substrate between the first and second semiconductor fins and a semiconducting layer is formed on the buffer layer. The buffer layer is selectively removed and replaced with a dielectric layer. A first gate is formed over a first channel region of the first semiconductor fin and a second gate is formed over a second channel region of the first semiconductor fin. Source and drain epitaxy regions are selectively formed on surfaces of the first gate.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 26, 2018
    Inventors: Ruqiang Bao, Zhenxing Bi, Kangguo Cheng, Zheng Xu
  • Publication number: 20180114833
    Abstract: Semiconductor devices and methods of making the same include forming a stack of alternating layers of channel material and sacrificial material. The sacrificial material is etched away to free the layers of channel material. A gate stack is formed around the layers of channel material. At least one layer of channel material is deactivated. Source and drain regions are formed in contact with the at least one layer of active channel material.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 26, 2018
    Inventors: Ruqiang Bao, Michael A. Guillorn, Terence B. Hook, Nicolas J. Loubet, Robert R. Robison, Reinaldo A. Vega, Tenko Yamashita
  • Publication number: 20180102294
    Abstract: A first aspect of the invention provides for a method including: forming an interfacial layer in a first opening in a pFET region and a second opening in an nFET region, each opening being in a dielectric layer in the pFET region and the nFET region; forming a high-k layer over the interfacial layer in each of the first and second openings; forming a wetting layer over the high-k layer in each of the first and second openings; forming a first metal layer in each of the first and second openings, the first metal layer including tungsten; and forming a first gate electrode layer over the first metal layer to substantially fill each of the first and second openings, thereby forming a first replacement gate stack over the pFET region and a second replacement gate stack over the nFET region.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 12, 2018
    Inventors: Ruqiang Bao, Siddarth A. Krishnan