Patents by Inventor Ruqiang Bao

Ruqiang Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10418288
    Abstract: Techniques for forming VFETs having different gate lengths (and optionally different gate pitch and/or gate oxide thickness) on the same wafer are provided. In one aspect, a method of forming a VFET device includes: patterning fins in a wafer including a first fin(s) patterned to a first depth and a second fin(s) patterned to a second depth, wherein the second depth is greater than the first depth; forming bottom source/drains at a base of the fins; forming bottom spacers on the bottom source/drains; forming gates alongside the fins, wherein the gates formed alongside the first fin(s) have a first gate length Lg1, wherein the gates formed alongside the second fin(s) have a second gate length Lg2, and wherein Lg1<Lg2; forming top spacers over the gates; and forming top source/drains over the top spacers. A VFET is also provided.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Shogo Mochizuki, Choonghyun Lee, Chun Wing Yeung
  • Publication number: 20190267325
    Abstract: A method of forming a semiconductor structure comprises forming a plurality of fins disposed over a top surface of a substrate and forming one or more vertical transport field-effect transistors (VTFETs) from the plurality of fins using a replacement metal gate (RMG) process. A gate surrounding at least one fin of a given one of the VTFETs comprises a gate self-aligned contact (SAC) capping layer disposed over a gate contact metal layer, the gate contact metal layer being disposed adjacent an end of the at least one fin.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Inventors: Choonghyun Lee, Chun Wing Yeung, Ruqiang Bao, Hemanth Jagannathan
  • Patent number: 10395989
    Abstract: A method is presented for forming a device having multiple field effect transistors (FETs) with each FET having a different work function. In particular, the method includes forming multiple microchips in which each FET has a different threshold voltage (Vt) or work-function. In one embodiment, four FETs are formed over a semiconductor substrate. Each FET has a source, drain and a gate electrode. Each gate electrode is processed independently to provide a substantially different threshold voltage.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, ChoongHyun Lee
  • Patent number: 10395988
    Abstract: A method is presented for reducing contact resistance and parasitic capacitance. The method includes forming a plurality of fins over a semiconductor substrate, forming a bottom source/drain region between the plurality of fins, forming a bottom spacer over the bottom source/drain region, forming high-k metal gates over the bottom spacers, and forming a top spacer over the high-k metal gates. The method further includes forming an interlayer dielectric (ILD) over the top spacer, recessing the ILD to expose top sections of the plurality of fins, depositing an epitaxial material over each of the top sections of the plurality of fins, forming a dielectric film over the epitaxial material such that air-gaps are created between the top sections of the plurality of fins and recessing the dielectric film to expose top sections of the epitaxial material and to deposit a silicide metal liner and a conductive material thereon.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Zheng Xu, Ruqiang Bao, Zhenxing Bi
  • Publication number: 20190259754
    Abstract: A semiconductor device includes a first transistor formed on a substrate, the first transistor including a channel region positioned on the substrate; a second transistor formed on the substrate, the second transistor including a channel region positioned on the substrate; a high-k dielectric layer disposed on the channel region of the first transistor and the channel region of the second transistor; a first transistor metal gate positioned in contact with the high-k dielectric on the first transistor; a second transistor metal gate positioned in contact with the high-k dielectric on the second transistor; an oxygen absorbing barrier disposed in contact with the high-k dielectric between the first transistor and the second transistor; and a conductive electrode material disposed on the first transistor, the second transistor, and the oxygen absorbing barrier.
    Type: Application
    Filed: May 2, 2019
    Publication date: August 22, 2019
    Inventors: Ruqiang Bao, Unoh Kwon, Kai Zhao
  • Publication number: 20190252495
    Abstract: Semiconductor devices and methods of making the same include forming a stack of alternating layers of channel material and sacrificial material. The sacrificial material is etched away to free the layers of channel material. A gate stack is formed around the layers of channel material. At least one layer of channel material is deactivated. Source and drain regions are formed in contact with the at least one layer of active channel material.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Ruqiang Bao, Michael A. Guillorn, Terence B. Hook, Nicolas J. Loubet, Robert R. Robison, Reinaldo A. Vega, Tenko Yamashita
  • Patent number: 10381479
    Abstract: Techniques for interface charge reduction to improve performance of SiGe channel devices are provided. In one aspect, a method for reducing interface charge density (Dit) for a SiGe channel material includes: contacting the SiGe channel material with an Si-containing chemical precursor under conditions sufficient to form a thin continuous Si layer, e.g., less than 5 monolayers thick on a surface of the SiGe channel material which is optionally contacted with an n-dopant precursor; and depositing a gate dielectric on the SiGe channel material over the thin continuous Si layer, wherein the thin continuous Si layer by itself or in conjunction with n-dopant precursor passivates an interface between the SiGe channel material and the gate dielectric thereby reducing the Dit. A FET device and method for formation thereof are also provided.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Devendra Sadana, Dechao Guo, Joel P. de Souza, Ruqiang Bao, Stephen W. Bedell, Shogo Mochizuki, Gen Tsutsui, Hemanth Jagannathan, Marinus Hopstaken
  • Patent number: 10373912
    Abstract: A method of forming a semiconductor structure comprises forming a plurality of fins disposed over a top surface of a substrate and forming one or more vertical transport field-effect transistors (VTFETs) from the plurality of fins using a replacement metal gate (RMG) process. A gate surrounding at least one fin of a given one of the VTFETs comprises a gate self-aligned contact (SAC) capping layer disposed over a gate contact metal layer, the gate contact metal layer being disposed adjacent an end of the at least one fin.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Chun Wing Yeung, Ruqiang Bao, Hemanth Jagannathan
  • Publication number: 20190229020
    Abstract: A method of forming fin structures that includes providing at least one silicon germanium containing fin structure, and forming a fin liner on the at least one silicon germanium containing fin structure. The fin liner includes a silicon germanium and oxygen containing layer. The method continues with annealing the at least on silicon germanium containing fin structure having the fin liner present thereon. During the annealing, the silicon germanium oxygen containing layer reacts with the silicon germanium containing fin structure to provide surface formation of a silicon rich layer on the silicon germanium containing fin structure.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Choonghyun Lee, Richard G. Southwick
  • Patent number: 10361130
    Abstract: A method of forming fin structures that includes providing at least one silicon germanium containing fin structure, and forming a fin liner on the at least one silicon germanium containing fin structure. The fin liner includes a silicon germanium and oxygen containing layer. The method continues with annealing the at least on silicon germanium containing fin structure having the fin liner present thereon. During the annealing, the silicon germanium oxygen containing layer reacts with the silicon germanium containing fin structure to provide surface formation of a silicon rich layer on the silicon germanium containing fin structure.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: July 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Choonghyun Lee, Richard G. Southwick
  • Patent number: 10361132
    Abstract: The disclosure relates to semiconductor structures and, more particularly, to structures with thinned dielectric material and methods of manufacture. The method includes depositing a high-k dielectric on a substrate. The method further includes depositing a titanium nitride film directly on the high-k while simultaneously etching the high-k dielectric.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: July 23, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruqiang Bao, Takashi Ando, Aritra Dasgupta, Kai Zhao, Unoh Kwon, Siddarth A. Krishnan
  • Patent number: 10354999
    Abstract: A semiconductor device includes a first transistor formed on a substrate, the first transistor including a channel region positioned on the substrate; a second transistor formed on the substrate, the second transistor including a channel region positioned on the substrate; a high-k dielectric layer disposed on the channel region of the first transistor and the channel region of the second transistor; a first transistor metal gate positioned in contact with the high-k dielectric on the first transistor; a second transistor metal gate positioned in contact with the high-k dielectric on the second transistor; an oxygen absorbing barrier disposed in contact with the high-k dielectric between the first transistor and the second transistor; and a conductive electrode material disposed on the first transistor, the second transistor, and the oxygen absorbing barrier.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: July 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Unoh Kwon, Kai Zhao
  • Publication number: 20190214343
    Abstract: A method of forming a semiconductor structure comprises forming a plurality of fins disposed over a top surface of a substrate and forming one or more vertical transport field-effect transistors (VTFETs) from the plurality of fins using a replacement metal gate (RMG) process. A gate surrounding at least one fin of a given one of the VTFETs comprises a gate self-aligned contact (SAC) capping layer disposed over a gate contact metal layer, the gate contact metal layer being disposed adjacent an end of the at least one fin.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 11, 2019
    Inventors: Choonghyun Lee, Chun Wing Yeung, Ruqiang Bao, Hemanth Jagannathan
  • Publication number: 20190214311
    Abstract: A semiconductor structure comprises a semiconductor substrate, an N-type stacked nanosheet channel structure formed on the semiconductor substrate, and a P-type stacked nanosheet channel structure formed adjacent to the N-type stacked nanosheet channel structure on the semiconductor substrate. Each of the adjacent N-type and P-type stacked nanosheet channel structures comprises a plurality of stacked channel regions with each such channel region being substantially surrounded by a gate dielectric layer and a gate work function metal layer, and with the gate work function metal layer being separated from the channel regions by the gate dielectric layer. The gate dielectric and gate work function metal layers of the adjacent N-type and P-type stacked nanosheet channel structures are substantially eliminated from a shared gate region between the adjacent N-type and P-type stacked nanosheet channel structures.
    Type: Application
    Filed: January 7, 2019
    Publication date: July 11, 2019
    Inventors: Indira Seshadri, Ekmini Anuja De Silva, Jing Guo, Romain J. Lallement, Ruqiang Bao, Zhenxing Bi, Sivananda Kanakasabapathy
  • Publication number: 20190214305
    Abstract: Techniques for forming VFETs having different gate lengths (and optionally different gate pitch and/or gate oxide thickness) on the same wafer are provided. In one aspect, a method of forming a VFET device includes: patterning fins in a wafer including a first fin(s) patterned to a first depth and a second fin(s) patterned to a second depth, wherein the second depth is greater than the first depth; forming bottom source/drains at a base of the fins; forming bottom spacers on the bottom source/drains; forming gates alongside the fins, wherein the gates formed alongside the first fin(s) have a first gate length Lg1, wherein the gates formed alongside the second fin(s) have a second gate length Lg2, and wherein Lg1<Lg2; forming top spacers over the gates; and forming top source/drains over the top spacers. A VFET is also provided.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 11, 2019
    Inventors: Ruqiang Bao, Shogo Mochizuki, Choonghyun Lee, Chun Wing Yeung
  • Patent number: 10340340
    Abstract: Semiconductor devices and methods of making the same include forming a stack of alternating layers of channel material and sacrificial material. The sacrificial material is etched away to free the layers of channel material. A gate stack is formed around the layers of channel material. At least one layer of channel material is deactivated. Source and drain regions are formed in contact with the at least one layer of active channel material.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Michael A. Guillorn, Terence B. Hook, Nicolas J. Loubet, Robert R. Robison, Reinaldo A. Vega, Tenko Yamashita
  • Publication number: 20190198500
    Abstract: A semiconductor device is provided and has an n-channel field effect transistor (nFET) bottom junction and a p-channel field effect transistor (pFET) bottom junction. The semiconductor device includes first and second fin formations operably disposed in the nFET and pFET bottom junctions, respectively. The semiconductor device can also include an nFET metal gate layer deposited for oxygen absorption onto a high-k dielectric layer provided about the first fin formation in the nFET bottom junction and onto a pFET metal gate layer provided about the second fin formation in the pFET bottom junction. Alternatively, the semiconductor device can include an oxygen scavenging layer deposited onto the pFET metal gate layer about the second fin formation in the pFET bottom junction and, with the pFET metal gate layer deposited onto the nFET metal gate layer about the first fin formation in the nFET bottom junction, onto the pFET metal gate layer in the nFET bottom junction.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 27, 2019
    Inventors: RUQIANG BAO, HEMANTH JAGANNATHAN, PAUL JAMISON, CHOONGHYUN LEE, VIJAY NARAYANAN
  • Patent number: 10332883
    Abstract: A semiconductor device comprises a first semiconductor fin arranged on a substrate, the first semiconductor fin having a first channel region, and a second semiconductor fin arranged on the substrate, the second semiconductor fin having a second channel region. A first gate stack is arranged on the first channel region. The first gate stack comprises a first metal layer arranged on the first channel region, a work function metal layer arranged on the first metal layer, and a work function metal arranged on the work function metal layer. A second gate stack is arranged on the second channel region, the second gate stack comprising a work function metal arranged on the second channel region.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 25, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Dechao Guo, Vijay Narayanan
  • Publication number: 20190189774
    Abstract: A method of fabricating a semiconductor device includes forming a fin on a substrate. Source/drain regions are arranged on the substrate on opposing sides of the fin. The method includes depositing a semiconductor layer on the source/drain regions. The method includes depositing a germanium containing layer on the fin and the semiconductor layer. The method further includes applying an anneal operation configured to chemically react the semiconductor layer with the germanium containing layer and form a silicon oxide layer.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 20, 2019
    Inventors: RUQIANG BAO, HEMANTH JAGANNATHAN, CHOONGHYUN LEE, SHOGO MOCHIZUKI
  • Patent number: 10325815
    Abstract: A method of forming multiple vertical transport fin field effect transistors (VT FinFETs) having different channel lengths, including, forming a vertical fin on a first region of a substrate and a vertical fin on a second region of the substrate, forming a cover block on the vertical fin on the second region of the substrate, forming a first bottom source/drain on the first region of the substrate, wherein the first bottom source/drain covers a lower portion of the vertical fin on the first region, removing the cover block, and forming a second bottom source/drain in the second region of the substrate, wherein the second bottom source/drain is below the surface of the substrate, wherein the second bottom source/drain does not cover a lower portion of the vertical fin on the second region.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Choonghyun Lee, Shogo Mochizuki, Chun W. Yeung