Patents by Inventor Ruth N. Klepfer

Ruth N. Klepfer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969233
    Abstract: A method for monitoring a cardiovascular pressure in a patient includes measuring, by pressure sensing circuitry of an implantable pressure sensing device, the cardiovascular pressure of the patient. The method further includes transmitting, via wireless communication circuitry of the implantable pressure sensing device, the measured cardiovascular pressure to another device. The method further includes determining, by processing circuitry of the other device, whether a posture of the patient at a time of the measured cardiovascular pressure was a target posture for cardiovascular pressure measurements. The method further includes determining, by the processing circuitry of the other device, whether to store or discard the transmitted cardiovascular pressure based on determining whether the posture was the target posture.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Mary M. Morris, Ruth N. Klepfer, Karen J. Kleckner, Joel R. Lauer
  • Patent number: 11813464
    Abstract: Systems, interfaces, and methods are described herein related to the evaluation of a patient's cardiac conduction system and evaluation of cardiac conduction system pacing therapy being delivered to the patient's cardiac conduction system. Evaluation of the patient's cardiac conduction system may utilize a plurality of breakthrough maps to determine where a cardiac conduction system block may be located. Evaluation of cardiac conduction system pacing therapy may utilize various electrical heterogeneity information monitored before and during delivery of cardiac conduction system pacing therapy.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Ruth N. Klepfer, Manfred Justen, Subham Ghosh, Jeffrey M. Gillberg
  • Patent number: 11801390
    Abstract: An implantable medical device system and method for delivering cardiac resynchronization therapy (CRT) pacing that includes determining capture associated with the delivered CRT pacing is ineffective in response to the delivered CRT pacing. A reason for capture being ineffective is determined and a safety margin is adjusted if the determined reason for capture being ineffective is loss of capture and a left ventricle (LV) pre-excitation is adjusted if the determined reason for capture being ineffective is delayed LV depolarization. Monitoring for a change in effective cardiac resynchronization therapy is used to confirm that the adjustment of the CRT pacing was effective in resolving the ineffective capture.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: October 31, 2023
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Ruth N. Klepfer, Subham Ghosh, Yanina Grinberg
  • Publication number: 20230285758
    Abstract: Systems, devices, and methods may be used to deliver and provide cardiac pacing therapy to a patient. Leads or leadlets carrying one or more left ventricular electrodes may be positioned in or near the interventricular septum to sense and pace left ventricular signals of the patient's heart. In one example, a leadlet including one or more left ventricular electrodes may extend in the coronary sinus from a leadless implantable medical device located in the right atrium.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 14, 2023
    Inventors: Andrea J. Asleson, Wade M. Demmer, Nathan A. Grenz, Ruth N. Klepfer, Alexander R. Mattson, Kevin Seifert, Zhongping Yang
  • Patent number: 11305127
    Abstract: A method includes locating the triangle of Koch region in the right atrium of a patient's heart; securing at least one electrode of an implantable lead or device to cardiac tissue from the triangle of Koch region to deliver ventricle-from-atrium (VfA) cardiac therapy; and testing the location or depth of the at least one electrode to configure VfA cardiac therapy. Locating the target implant region in the triangle of Koch region may include detecting an atrial slow pathway potential (ASP) or atrial pacing output.
    Type: Grant
    Filed: March 8, 2020
    Date of Patent: April 19, 2022
    Assignee: Medtronic Inc.
    Inventors: Ruth N. Klepfer, Zhongping Yang, Andrea J. Asleson, Nathan A. Grenz, Kaileigh E. Rock
  • Publication number: 20220032069
    Abstract: An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
    Type: Application
    Filed: July 26, 2021
    Publication date: February 3, 2022
    Inventors: Ruth N. Klepfer, Manfred Justen, Subham Ghosh, Jeffrey M. Gillberg, Trent M. Fischer, Elizabeth A. Schotzko
  • Publication number: 20220032070
    Abstract: Systems, interfaces, and methods are described herein related to the evaluation of a patient's cardiac conduction system and evaluation of cardiac conduction system pacing therapy being delivered to the patient's cardiac conduction system. Evaluation of the patient's cardiac conduction system may utilize a plurality of breakthrough maps to determine where a cardiac conduction system block may be located. Evaluation of cardiac conduction system pacing therapy may utilize various electrical heterogeneity information monitored before and during delivery of cardiac conduction system pacing therapy.
    Type: Application
    Filed: June 29, 2021
    Publication date: February 3, 2022
    Inventors: Ruth N. Klepfer, Manfred Justen, Subham Ghosh, Jeffrey M. Gillberg
  • Publication number: 20220031221
    Abstract: Cardiac electrical activity is monitored from tissue of the patient using the plurality of external electrodes. One or more cardiac metrics of the patient are generated based on the monitored electrical activity. It is determined whether the patient is a candidate for a cardiac resynchronization therapy (CRT) device based on a first global dyssynchrony metric using the one or more cardiac metrics if the patient has a right bundle branch block. It is determined whether the patient is a candidate for a cardiac resynchronization therapy (CRT) device based on a second global dyssynchrony metric using the one or more cardiac metrics if the patient does not have a right bundle branch block.
    Type: Application
    Filed: July 6, 2021
    Publication date: February 3, 2022
    Inventors: Ruth N. Klepfer, Manfred Justen, Subham Ghosh, Jeffrey M. Gillberg
  • Patent number: 11213676
    Abstract: An implantable medical device delivery system includes a delivery catheter including an elongated body with a first portion defining a first lumen and a second portion defining a second lumen. An angle is defined between a first axis and a second axis defined by the first and second portions, respectively. The second axis points toward the left ventricular (LV) apex of the patient's heart when the first axis points into the CS. The first portion or an elongated element may extend into the CS to anchor the delivery catheter to the orientation of the CS.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: January 4, 2022
    Assignee: Medtronic, Inc.
    Inventors: Andrea J. Asleson, Zhongping Yang, Ruth N. Klepfer
  • Patent number: 11154207
    Abstract: An implantable medical device, such as a sensor for monitoring a selected internally detectable physiological parameter of a patient, is attached to a fixation assembly that is deployable within the patient to position and orient the sensor to enable it to perform its function. The fixation assembly is formed having at least one flexible asymmetric connector where each fixation member includes a plurality of loops, wherein a first loop of the plurality of loops has a maximum pitch that is different from a maximum pitch of a second loop of the plurality of loops. The attachment of the housing and the fixation assembly includes providing a tubular member that is welded to the housing and crimped over a section of the fixation assembly.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 26, 2021
    Assignee: Medtronic, Inc.
    Inventors: Michael P. Campbell, George Patras, Michael A. Schugt, Amir R. Zamiri, Richard J. O'Brien, Ruth N. Klepfer
  • Patent number: 11071865
    Abstract: An implantable cardiac rhythm management medical device is configured to switch from a first operating mode to a second, ventricular assist device operating mode for detecting cardiac arrhythmias and controlling delivery of anti-arrhythmia therapy during the ventricular assist device operating mode. The implantable medical device may receive a command from another medical device indicating co-implantation of a ventricular assist device with the implantable medical device in a patient and switch from the first mode of operating to the second mode of operating in response to receiving the command. Switching from the first mode to the second mode may include adjusting at least one control parameter used for controlling an electrical stimulation therapy deliverable by the implantable cardiac rhythm management medical device.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: July 27, 2021
    Assignee: Medtronic, Inc.
    Inventors: Ruth N. Klepfer, Robert W. Stadler
  • Publication number: 20210154477
    Abstract: Systems, devices, and methods may be used to deliver and provide cardiac pacing therapy to a patient. Leads or leadlets carrying one or more left ventricular electrodes may be positioned in or near the interventricular septum to sense and pace left ventricular signals of the patient's heart. In one example, a leadlet including one or more left ventricular electrodes may extend in the coronary sinus from a leadless implantable medical device located in the right atrium.
    Type: Application
    Filed: November 26, 2020
    Publication date: May 27, 2021
    Inventors: Andrea J. Asleson, Wade M. Demmer, Nathan A. Grenz, Ruth N. Klepfer, Alexander R. Mattson, Kevin Seifert, Zhongping Yang
  • Publication number: 20210068681
    Abstract: An implantable medical device, such as a sensor for monitoring a selected internally detectable physiological parameter of a patient, is attached to a fixation assembly that is deployable within the patient to position and orient the sensor to enable it to perform its function. The fixation assembly is formed having at least one flexible asymmetric connector where each fixation member includes a plurality of loops, wherein a first loop of the plurality of loops has a maximum pitch that is different from a maximum pitch of a second loop of the plurality of loops. The attachment of the housing and the fixation assembly includes providing a tubular member that is welded to the housing and crimped over a section of the fixation assembly.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 11, 2021
    Inventors: Michael P. Campbell, George Patras, Michael A. Schugt, Amir R. Zamiri, Richard J. O'Brien, Ruth N. Klepfer
  • Publication number: 20210060340
    Abstract: A method includes locating the triangle of Koch region in the right atrium of a patient's heart; securing at least one electrode of an implantable lead or device to cardiac tissue from the triangle of Koch region to deliver ventricle-from-atrium (VfA) cardiac therapy; and testing the location or depth of the at least one electrode to configure VfA cardiac therapy. Locating the target implant region in the triangle of Koch region may include detecting an atrial slow pathway potential (ASP) or atrial pacing output.
    Type: Application
    Filed: March 8, 2020
    Publication date: March 4, 2021
    Inventors: Ruth N. Klepfer, Zhongping Yang, Andrea J. Asleson, Nathan A. Grenz, Kaileigh E. Rock
  • Patent number: 10835133
    Abstract: A method for monitoring a cardiovascular pressure in a patient may include storing, in a memory of an implantable medical device system and in association with each one or more different patient postures, a respective offset value for the cardiovascular pressure of the patient. The one or more offset values may be determined based on a distance between an implantable pressure sensing device and an anatomical structure of the patient, a location of the implantable pressure sensing device within the patient, or one or more dimensions an anatomical structure of the patient. The method further includes determining a measured value of the cardiovascular pressure and a posture of the patient when the value of the cardiovascular pressure was measured, selecting a stored offset value associated with the current patient posture, and determining an adjusted cardiovascular pressure value based on the selected offset value and the measured cardiovascular pressure value.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: November 17, 2020
    Assignee: Medtronic, Inc.
    Inventors: Mary M. Morris, Ruth N. Klepfer, Tommy D. Bennett
  • Publication number: 20200306529
    Abstract: An implantable medical device delivery system includes a delivery catheter including an elongated body with a first portion defining a first lumen and a second portion defining a second lumen. An angle is defined between a first axis and a second axis defined by the first and second portions, respectively. The second axis points toward the left ventricular (LV) apex of the patient's heart when the first axis points into the CS. The first portion or an elongated element may extend into the CS to anchor the delivery catheter to the orientation of the CS.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 1, 2020
    Inventors: Andrea J. Asleson, Zhongping Yang, Ruth N. Klepfer
  • Publication number: 20200288989
    Abstract: A method for monitoring a cardiovascular pressure in a patient includes measuring, by pressure sensing circuitry of an implantable pressure sensing device, the cardiovascular pressure of the patient. The method further includes transmitting, via wireless communication circuitry of the implantable pressure sensing device, the measured cardiovascular pressure to another device. The method further includes determining, by processing circuitry of the other device, whether a posture of the patient at a time of the measured cardiovascular pressure was a target posture for cardiovascular pressure measurements. The method further includes determining, by the processing circuitry of the other device, whether to store or discard the transmitted cardiovascular pressure based on determining whether the posture was the target posture.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Inventors: Mary M. Morris, Ruth N. Klepfer, Karen J. Kleckner, Joel R. Lauer
  • Publication number: 20190374781
    Abstract: An implantable medical device system and method for delivering cardiac resynchronization therapy (CRT) pacing that includes determining capture associated with the delivered CRT pacing is ineffective in response to the delivered CRT pacing. A reason for capture being ineffective is determined and a safety margin is adjusted if the determined reason for capture being ineffective is loss of capture and a left ventricle (LV) pre-excitation is adjusted if the determined reason for capture being ineffective is delayed LV depolarization. Monitoring for a change in effective cardiac resynchronization therapy is used to confirm that the adjustment of the CRT pacing was effective in resolving the ineffective capture.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 12, 2019
    Inventors: Robert W. Stadler, Ruth N. Klepfer, Subham Ghosh, Yanina Grinberg
  • Publication number: 20190336767
    Abstract: An implantable cardiac rhythm management medical device is configured to switch from a first operating mode to a second, ventricular assist device operating mode for detecting cardiac arrhythmias and controlling delivery of anti-arrhythmia therapy during the ventricular assist device operating mode. The implantable medical device may receive a command from another medical device indicating co-implantation of a ventricular assist device with the implantable medical device in a patient and switch from the first mode of operating to the second mode of operating in response to receiving the command. Switching from the first mode to the second mode may include adjusting at least one control parameter used for controlling an electrical stimulation therapy deliverable by the implantable cardiac rhythm management medical device.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 7, 2019
    Inventors: Ruth N. KLEPFER, Robert W. STADLER
  • Patent number: 10376159
    Abstract: Systems, devices disclosed provide example methods comprising determining that a triggering event has occurred based on statuses for a set of physiological parameters associated with the patient, the physiological parameters indicative of the patient engaging in a patient initiated physical activity, generating a trigger output signal in response to the determination that the triggering event has occurred, wirelessly transmitting the trigger output signal to a pressure sensing device implanted in a vessel of the patient, triggering, based on receiving the trigger output signal, the pressure sensing device to sense a cardiovascular pressure of the patient; and transmitting, by the pressure sensing device, a wireless signal comprising data corresponding to the sensed cardiovascular pressure of the patient.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: August 13, 2019
    Assignee: Medtronic, Inc.
    Inventors: Mary M. Morris, Ruth N. Klepfer, Karen J. Kleckner, Joel R. Lauer