Delivery systems for VfA cardiac therapy
An implantable medical device delivery system includes a delivery catheter including an elongated body with a first portion defining a first lumen and a second portion defining a second lumen. An angle is defined between a first axis and a second axis defined by the first and second portions, respectively. The second axis points toward the left ventricular (LV) apex of the patient's heart when the first axis points into the CS. The first portion or an elongated element may extend into the CS to anchor the delivery catheter to the orientation of the CS.
Latest Medtronic, Inc. Patents:
- Rate smoothing to enhance atrial synchronous pacing in a ventricular pacemaker
- Pacing mode switching and rate response limit in a ventricular pacemaker
- Method and apparatus for atrial arrhythmia episode detection
- Unwrapped 2D view of a stimulation lead with complex electrode array geometry
- Interventional medical devices, device systems, and fixation components thereof
The present disclosure relates to implantable medical devices, systems, and methods. In particular, the present disclosure relates to delivery of implantable medical devices, systems, and methods for cardiac therapy, including single chamber or multiple chamber pacing (e.g., dual or triple chamber pacing), atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy.
The cardiac conduction system includes the sinus atrial (SA) node, the atrioventricular (AV) node, the bundle of His, bundle branches and Purkinje fibers. A heart beat is initiated in the SA node, which may be described as the natural “pacemaker” of the heart. An electrical impulse arising from the SA node causes the atrial myocardium to contract. The signal is conducted to the ventricles via the AV node which inherently delays the conduction to allow the atria to stop contracting before the ventricles begin contracting thereby providing proper AV synchrony. The electrical impulse is conducted from the AV node to the ventricular myocardium via the bundle of His, bundle branches, and Purkinje fibers.
Patients with a conduction system abnormality, such as poor AV node conduction or poor SA node function, may receive an implantable medical device (IMD), such as a pacemaker, to restore a more normal heart rhythm and AV synchrony. Some types of IMDs, such as cardiac pacemakers, implantable cardioverter defibrillators (ICDs), or cardiac resynchronization therapy (CRT) devices, provide therapeutic electrical stimulation to a heart of a patient via electrodes on one or more implantable endocardial, epicardial, or coronary venous leads that are positioned in or adjacent to the heart. The therapeutic electrical stimulation may be delivered to the heart in the form of pulses or shocks for pacing, cardioversion, or defibrillation. In some cases, an IMD may sense intrinsic depolarizations of the heart, and control the delivery of therapeutic stimulation to the heart based on the sensing.
Delivery of therapeutic electrical stimulation to the heart can be useful in addressing cardiac conditions such as ventricular dyssynchrony that may occur in patients. Ventricular dyssynchrony may be described as a lack of synchrony or a difference in the timing of contractions between the ventricles of the heart. Significant differences in timing of contractions can reduce cardiac efficiency. CRT, delivered by an IMD to the heart, may enhance cardiac output by resynchronizing the electromechanical activity of the ventricles of the heart. CRT is sometimes referred to as “triple chamber pacing” because CRT can deliver pacing to the right atrium, right ventricle, and left ventricle.
Cardiac arrhythmias may be treated by delivering electrical shock therapy for cardioverting or defibrillating the heart in addition to cardiac pacing, for example, from an ICD, which may sense a patient's heart rhythm and classify the rhythm according to an arrhythmia detection scheme in order to detect episodes of tachycardia or fibrillation. Arrhythmias detected may include ventricular tachycardia (VT), fast ventricular tachycardia (FVT), ventricular fibrillation (VF), atrial tachycardia (AT) and atrial fibrillation (AT). Anti-tachycardia pacing (ATP), a painless therapy, can be used to treat ventricular tachycardia (VT) to substantially terminate many monomorphic fast rhythms. While ATP is painless, ATP may not deliver effective therapy for all types of VTs. For example, ATP may not be as effective for polymorphic VTs, which has variable morphologies. Polymorphic VTs and ventricular fibrillation (VFs) can be more lethal and may require expeditious treatment by shock.
Dual chamber medical devices are available that include a transvenous atrial lead carrying electrodes that may be placed in the right atrium and a transvenous ventricular lead carrying electrodes that may be placed in the right ventricle via the right atrium. Such dual-chamber medical devices are generally implanted in a subcutaneous pocket and the transvenous leads are tunneled to the subcutaneous pocket. Further, such dual-chamber medical devices may sense atrial electrical signals and ventricular electrical signals and can provide both atrial pacing and ventricular pacing as needed to promote a normal heart rhythm and AV synchrony. Some dual-chamber medical devices can treat both atrial and ventricular arrhythmias.
In some patients, single-chamber devices may adequately address the patient's needs. However, single-chamber devices capable of only single chamber sensing and therapy may not fully address cardiac conduction disease or abnormalities in all patients, for example, those with some forms of AV dyssynchrony or tachycardia. Dual-chamber sensing and/or pacing functions, in addition to ICD functionality in some cases, may be used to restore more normal heart rhythms.
SUMMARYThe techniques of this disclosure generally relate to a delivery catheter that guides an implantable medical device or lead to the correct location in the triangle of Koch region and at an orientation to deliver pacing to the LV using the CS as a physical reference.
In one aspect, the present disclosure provides an implantable medical device delivery system including an elongated element anchorable in the coronary sinus (CS) of a patient's heart. The system also includes a delivery catheter with an elongated body having a first portion defining a first lumen and a second portion defining a second lumen. The first lumen in a first distal end region of the first portion extends along a first axis and the second lumen in a second distal end region of the second portion extends along a second axis forming an angle with the first axis. The second axis points toward the left ventricular (LV) apex of the patient's heart when the anchorable elongated element is advanced through the first lumen into the CS.
In another aspect, the present disclosure provides a delivery catheter including a first portion advanceable into the coronary sinus (CS) of a patient's heart having an elongated body defining a first lumen and an exterior channel. When the first portion is advanced into the CS, a region of the first portion adjacent to the CS ostium of the patient's heart extends along a first axis. The device includes a second portion having an elongated body defining a second lumen and having a laterally-extending protrusion configured to be received into the exterior channel of the first portion to slidably guide the second portion along a length of the first portion. A distal end region of the second portion extends along a second axis when the protrusion is engaged in the channel forming a fixed angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first portion is advanced into the CS.
In yet another aspect, the present disclosure provides a method of delivering an implantable medical device that includes advancing a first distal end region of a first portion of a dual-lumen catheter toward the coronary sinus (CS) of a patient's heart. The first portion defines a first lumen and the first distal end region extends along a first axis. The method includes orienting a second distal end region of a second portion of the dual-lumen catheter toward the triangle of Koch region of the patient's heart. The second portion defines a second lumen and the second distal end region extends along a second axis forming an angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first distal end region is fully advanced toward the CS.
The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.
This disclosure relates to delivery of implantable medical devices, systems, and methods for ventricle-from-atrium (VfA) cardiac therapy, including single or multiple-chamber pacing (e.g., dual- or triple-chamber pacing), atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy. Although reference is made herein to implantable medical devices (IMDs), such as a pacemaker or ICD, the methods and processes may be used with any medical devices, systems, or methods related to a patient's heart. Various other applications will become apparent to one of skill in the art having the benefit of the present disclosure.
The procedure for locating a VfA device, or lead, in or at the correct implant location and orientation, so as to aim in the correct direction to stimulate the LV endocardial tissue, may be difficult. There are at least two factors to consider for such VfA device placement. First, the catheter tip of the delivery catheter is to be guided to the triangle of Koch between the CS ostium and the tricuspid valve annulus, which is smooth location in which it may be difficult to hold the placement of a catheter due to the instability of the locale. Second, once the catheter is in position, the device must be oriented in the correct plane of tissue to position an electrode in the LV tissue for pacing.
The present disclosure provides a delivery catheter, which may be described as a dual-lumen, or bi-lumen, catheter that may create stability at a target implant region and may also provide the correct angle into the tissue for providing VfA cardiac therapy. In particular, an example of a delivery catheter may guide an implantable medical device or lead to the correct location in the triangle of Koch region and at an orientation to deliver pacing to the LV using the CS as a physical reference. For example, a portion of the delivery catheter or an elongated element extending through the portion into the CS may anchor the delivery catheter based on the orientation of the CS. In one embodiment, one lumen of the delivery catheter may be used to track, or guide, an elongated member into the CS, and another lumen of the delivery catheter may have a bend near the distal end region to angle a device delivered thereby into the tissue in the correct orientation. The lumens may be described as being positioned side-by-side.
Reference will now be made to the drawings, which depict one or more aspects described in this disclosure. However, it will be understood that other aspects not depicted in the drawings fall within the scope of this disclosure. Like numbers used in the figures refer to like components, steps, and the like. However, it will be understood that the use of a reference character to refer to an element in a given figure is not intended to limit the element in another figure labeled with the same reference character. In addition, the use of different reference characters to refer to elements in different figures is not intended to indicate that the differently referenced elements cannot be the same or similar.
Although the present disclosure describes leadless and leaded implantable medical devices, reference is first made to
The device 104 is shown implanted in the right atrium (RA) of the patient's heart 8 in a target implant region 4. The device 104 may include one or more fixation members (such as fixation members 20 in
Effective delivery of the device 104 to a precise location in the target implant region 4 at a desired orientation may be challenging. A delivery catheter 100 may provide a stable anchoring to the CS to facilitate delivery of the device 104 to the target implant region 4. The stable anchoring may be facilitated by the use of an elongated element 102 that extends through the delivery catheter 100. In some embodiments, the delivery catheter 100 may be described as a dual-lumen catheter. The dual-lumen catheter may include a first portion 101 defining a first lumen and a second portion 103 defining a second lumen, which may be integrally formed from a single piece of material or separately formed. The first portion 101 may extend into the CS, or the first lumen to of the first portion may be used to deliver the elongated element 102 into the CS, for anchoring. A second lumen may be used to deliver the implantable medical device 104, or lead, to the triangle of Koch for implantation. The dual-lumen catheter may be described as being pre-shaped or configured to provide a fixed or deflectable angle between the first lumen and the second lumen, for example, at least at their distal end regions. When the first lumen is aligned to the orientation of the coronary sinus using the elongated element 102 extended into the CS, the second lumen may be oriented and aligned to the triangle of Koch region at an angle that will implant the tissue-piercing electrode of the device 104 into the high basal and/or septal region of the LV myocardium from the triangle of Koch region of the RA through the RA endocardium and central fibrous body. The delivery catheter 100 may be removed after delivery of the device 104.
The device 104 may include one or more dart electrodes 12 having a straight shaft extending from the distal end region of device 104, through the atrial myocardium and the central fibrous body, and into the ventricular myocardium 14 or along the ventricular septum, without perforating entirely through the ventricular endocardial or epicardial surfaces. In other words, the one or more dart electrodes 12 may not pierce through the ventricular wall into the blood volume. The one or more dart electrodes 12 may each carry one or more electrode elements at the distal end region of the shaft for positioning the one or more electrode elements within the ventricular myocardium for sensing ventricular signals and delivering ventricular pulses (e.g., to depolarize the left ventricle to initiate a contraction of the left ventricle). In some examples, the electrode elements at the distal end region of the shaft may include a cathode electrode provided for use in a bipolar electrode pair for pacing and sensing. While the implant region 4 is shown in
The cardiac therapy system 2 may also include a separate medical device 50 (depicted diagrammatically in
The device 104 and the separate medical device 50 may cooperate to provide cardiac therapy to the patient's heart 8. For example, the device 104 and the separate medical device 50 may be used to detect tachycardia, monitor tachycardia, and/or provide tachycardia-related therapy. For example, the device 104 may communicate with the separate medical device 50 wirelessly to trigger shock therapy using the separate medical device 50. As used herein, “wirelessly” refers to an operative coupling or connection without using a metal conductor connecting the device 104 and the separate medical device 50. In one example, wireless communication may use a distinctive, signaling, or triggering electrical pulse provided by the device 104 that conducts through the patient's tissue and is detectable by the separate medical device 50. In another example, wireless communication may use a communication interface (e.g., an antenna) of the device 104 to provide electromagnetic radiation that propagates through patient's tissue and is detectable, for example, using a communication interface (e.g., an antenna) of the separate medical device 50.
The intracardiac device 10 may include a housing 30. The housing 30 may define a hermetically-sealed internal cavity in which internal components of the device 106 reside, such as a sensing circuit, therapy delivery circuit, control circuit, memory, telemetry circuit, other optional sensors, and a power source. The housing 30 may be formed from an electrically conductive material including titanium or titanium alloy, stainless steel, MP35N (a non-magnetic nickel-cobalt-chromium-molybdenum alloy), platinum alloy or other bio-compatible metal or metal alloy. In other examples, the housing 30 may be formed from a non-conductive material including ceramic, glass, sapphire, silicone, polyurethane, epoxy, acetyl co-polymer plastics, polyether ether ketone (PEEK), a liquid crystal polymer, or other biocompatible polymer.
The device 106 may be described being as a leadless implantable medical device. As used herein, “leadless” refers to a device being free of a lead extending out of the patient's heart 8. In other words, a leadless device may have a lead that does not extend from outside of the patient's heart to inside of the patient's heart. Some leadless devices may be introduced through a vein, but once implanted, the device is free of, or may not include, any transvenous lead and may be configured to provide cardiac therapy without using any transvenous lead. A leadless VfA device, in particular, does not use a lead to operably connect to an electrode in the ventricle when a housing of the device is positioned in the atrium. A leadless electrode may be coupled to the housing of the medical device without using a lead between the electrode and the housing.
The housing 30 may be described as extending between a distal end region 32 and a proximal end region 34 in a generally cylindrical shape to facilitate catheter delivery. In other embodiments, the housing 30 may be prismatic or any other shape so as to perform the functionality and utility described herein. The housing 30 may include a delivery tool interface member 26, e.g., at the proximal end 34, for engaging with a delivery tool during implantation of the device 106. For example, the delivery tool interface member 26 may be used while the device 106 is advanced toward the target implant region 4 using the delivery catheter 100 (
All or a portion of the housing 30 may function as an electrode during cardiac therapy, for example, in sensing and/or pacing. In the example shown, the housing-based electrode 24 is shown to circumscribe a proximal portion of the housing 30. When the housing 30 includes (e.g., is formed from) an electrically conductive material, such as a titanium alloy or other examples listed above, portions of the housing 30 may be electrically insulated by a non-conductive material, such as a coating of parylene, polyurethane, silicone, epoxy, or other biocompatible polymer, leaving one or more discrete areas of conductive material exposed to define the proximal housing-based electrode 24. When the housing 30 includes (e.g., is formed from) a non-conductive material, such as a ceramic, glass, or polymer material, an electrically-conductive coating or layer, such as a titanium, platinum, stainless steel, or alloys thereof, may be applied to one or more discrete areas of the housing 30 to form the proximal housing-based electrode 24. In other examples, the proximal housing-based electrode 24 may be a component, such as a ring electrode, that is mounted or assembled onto the housing 30. The proximal housing-based electrode 24 may be electrically coupled to internal circuitry of the device 106, e.g., via the electrically-conductive housing 30 or an electrical conductor when the housing 30 includes a non-conductive material.
In the example shown, the housing-based electrode 24 is located nearer to the housing proximal end region 34 than the housing distal end region 32 and may, therefore, be described as being a proximal housing-based electrode. In other examples, however, the housing-based electrode 24 may be located at other positions along the housing 30, e.g., relatively more distally than the position shown in
At the distal end region 32, the device 106 may include a distal fixation and electrode assembly 36, which may include one or more fixation members 20, in addition to one or more dart electrodes 12 of equal or unequal length. The device 106 as depicted includes a single dart electrode 12 that may include a shaft 40 extending distally away from the housing distal end region 32 and may include one or more electrode elements, such as a tip electrode element 42 at or near the free, distal end region of the shaft 40. The tip electrode element 42 may have a conical or hemi-spherical distal tip with a relatively narrow tip diameter (e.g., less than about 1 millimeter (mm)) for penetrating into and through tissue layers without using a sharpened tip or needle-like tip having sharpened or beveled edges.
The shaft 40 of the dart electrode 12 may be a normally straight member and may be rigid. In other embodiments, the shaft 40 may be described as being relatively stiff but still possessing limited flexibility in lateral directions (e.g., resilient or semi-rigid). Further, the shaft 40 may be non-rigid to allow some lateral flexing with heart motion. However, in a relaxed state, when not subjected to any external forces, the shaft 40 may maintain a straight position as shown to hold the tip electrode element 42 spaced apart from the housing distal end region 32 at least by the length or height 47 of the shaft 40. The dart electrode 12 may be configured to pierce through one or more tissue layers to position the tip electrode element 42 within a desired tissue layer, e.g., the ventricular myocardium. As such, the length or height 47 of the shaft 40 may correspond to the expected pacing site depth, and the shaft may have a relatively high compressive-strength along its longitudinal axis to resist bending in a lateral or radial direction when pressed against the implant region 4. If a second dart electrode 12 is employed, its length or height may be unequal to the expected pacing site depth and may be configured to act as an indifferent electrode for delivery of pacing energy to the tissue. A longitudinal axial force may be applied against the tip electrode element 42, e.g., by applying longitudinal “pushing” force to the proximal end 34 of the housing 30, to advance the dart electrode 12 into the tissue within target implant region 4. The shaft 40 may be longitudinally non-compressive. Further, the shaft 40 may be elastically deformable in lateral or radial directions when subjected to lateral or radial forces to allow temporary flexing, e.g., with tissue motion, but may return to its normally straight position when lateral forces diminish. When the shaft 40 is not exposed to any external force, or to only a force along its longitudinal central axis, the shaft 40 may retain a straight, linear position as shown.
The one or more fixation members 20 may be described as one or more “tines” having a normally-curved position. The tines may be held in a distally extended position within a delivery tool. The distal tips of tines may penetrate the heart tissue to a limited depth before elastically curving back proximally into the normally curved position (shown) upon release from the delivery tool. Further, the fixation members 20 may include one or more aspects described in, for example, U.S. Pat. No. 9,675,579 (Grubac et al.), issued 13 Jun. 2017, and U.S. Pat. No. 9,119,959 (Rys et al.), issued 1 Sep. 2015, each of which is incorporated herein by reference in its entirety.
In some examples, the distal fixation and electrode assembly 36 includes a distal housing-based electrode 22. In the case of using the device 106 as a pacemaker for multiple-chamber pacing (e.g., dual- or triple-chamber pacing) and sensing, the tip electrode element 42 may be used as a cathode electrode paired with the proximal housing-based electrode 24 serving as a return anode electrode. Alternatively, the distal housing-based electrode 22 may serve as a return anode electrode paired with tip electrode element 42 for sensing ventricular signals and delivering ventricular pacing pulses. In other examples, the distal housing-based electrode 22 may be a cathode electrode for sensing atrial signals and delivering pacing pulses to the atrial myocardium in the target implant region 4. When the distal housing-based electrode 22 serves as an atrial cathode electrode, the proximal housing-based electrode 24 may serve as the return anode paired with the tip electrode element 42 for ventricular pacing and sensing and as the return anode paired with the distal housing-based electrode 22 for atrial pacing and sensing.
As shown in this illustration, the target implant region 4 in some pacing applications is along the atrial endocardium 18, generally inferior to the AV node 15 and the His bundle 5. The dart electrode 42 may define the length or height 47 of the shaft 40 for penetrating through the atrial endocardium 18 in the target implant region 4, through the central fibrous body 16, and into the ventricular myocardium 14 without perforating through the ventricular endocardial surface 17. When the length or height 47 of the dart electrode 12 is fully advanced into the target implant region 4, the tip electrode element 42 may rest, or be positioned, within the ventricular myocardium 14, and the distal housing-based electrode 22 may be positioned in intimate contact with or close proximity to the atrial endocardium 18. The dart electrode 12 may have a total combined length or height 47 of tip electrode element 42 and shaft 40 from about 3 mm to about 8 mm in various examples. The diameter of the shaft 40 may be less than about 2 mm, and may be about 1 mm or less, or even about 0.6 mm or less.
The device 106 may include a motion detector 11 within the housing 30. The motion detector 11 may be used to monitor mechanical activity, such as atrial mechanical activity (e.g., an atrial contraction) and/or ventricular mechanical activity (e.g., a ventricular contraction). In some embodiments, the motion detector 11 may be used to detect right atrial mechanical activity. A non-limiting example of a motion detector 11 includes an accelerometer. In some embodiments, the mechanical activity detected by the motion detector 11 may be used to supplement or replace electrical activity detected by one or more of the electrodes of the device 106. For example, the motion detector 11 may be used in addition to, or as an alternative to, the proximal housing-based electrode 24.
The motion detector 11 may also be used for rate response detection or to provide a rate-responsive 1 MB. Various techniques related to rate response may be described in U.S. Pat. No. 5,154,170 (Bennett et al.), issued Oct. 13, 1992, entitled “Optimization for rate responsive cardiac pacemaker,” and U.S. Pat. No. 5,562,111 (Yerich et al.), issued Oct. 8, 1996, entitled “Method and apparatus for rate-responsive cardiac pacing,” each of which is incorporated herein by reference in its entirety.
The device 110 may include a housing 130 having, or defining, an outer sidewall 135, shown as a cylindrical outer sidewall, extending from a housing distal end region 132 to a housing proximal end region 134. The housing 130 may enclose electronic circuitry configured to perform single or multiple chamber cardiac therapy, including atrial and ventricular cardiac electrical signal sensing and pacing the atrial and ventricular chambers. Delivery tool interface member 126 is shown on the housing proximal end region 134.
A distal fixation and electrode assembly 136 may be coupled to the housing distal end region 132. The distal fixation and electrode assembly 136 may include an electrically-insulative distal member 172 coupled to the housing distal end region 132. The tissue-piercing electrode 112 extends away from the housing distal end region 132, and multiple non-tissue-piercing electrodes 122 may be coupled directly to the insulative distal member 172. The tissue-piercing electrode 112 extends in a longitudinal direction away from the housing distal end region 132 and may be coaxial with the longitudinal center axis 131 of the housing 130.
The tissue-piercing distal electrode 112 may include an electrically-insulated shaft 140 and a tip electrode element 142. In some examples, the tissue-piercing distal electrode 112 also functions as a fixation member and may include a helical shaft 140 and a distal cathode tip electrode element 142. The helical shaft 140 may extend from a shaft distal end region 143 to a shaft proximal end region 141, which may be directly coupled to the insulative distal member 172. The helical shaft 140 may be coated with an electrically insulating material, e.g., parylene or other examples listed herein, to avoid sensing or stimulation of cardiac tissue along the shaft length. The tip electrode element 142 is at the shaft distal end region 143 and may serve as a cathode electrode for delivering ventricular pacing pulses and sensing ventricular electrical signals using the proximal housing-based electrode 124 as a return anode when the tip electrode element 142 is advanced into ventricular tissue. The proximal housing-based electrode 124 may be a ring electrode circumscribing the housing 130 and may be defined by an uninsulated portion of the longitudinal sidewall 135. Other portions of the housing 130 not serving as an electrode may be coated with an electrically insulating material as described above in conjunction with
Using two or more tissue-piercing electrodes (e.g., of any type) penetrating into the LV myocardium may be used for localized pacing capture and may mitigate ventricular pacing spikes affecting capturing atrial tissue. In some embodiments, multiple tissue-piercing electrodes may include two or more of a dart-type electrode (e.g., electrode 12 of
In some embodiments, one or more tissue-piercing electrodes (e.g., of any type) that penetrate into the LV myocardium may be multi-polar tissue-piercing electrodes. A multi-polar tissue-piercing electrode may include one or more electrically active and electrically separate elements, which may enable bipolar or multi-polar pacing from one or more tissue-piercing electrodes.
Multiple non-tissue-piercing electrodes 122 may be provided along a periphery of the insulative distal member 172 (e.g., peripheral to the tissue-piercing electrode 1120. The insulative distal member 172 may define a distal-facing surface 138 of the device 110 and a circumferential surface 139 that circumscribes the device 110 adjacent to the housing longitudinal sidewall 135. Non-tissue-piercing electrodes 122 may be formed of an electrically conductive material, such as titanium, platinum, iridium, or alloys thereof. In the illustrated embodiment, six non-tissue-piercing electrodes 122 are spaced apart radially at equal distances along the outer periphery of the insulative distal member 172. However, two or more non-tissue-piercing electrodes 122 may be provided in some embodiments.
Non-tissue-piercing electrodes 122 may be discrete components each retained within a respective recess 174 in the insulative member 172 sized and shaped to mate with the non-tissue-piercing electrode 122. In other examples, the non-tissue-piercing electrodes 122 may each be an uninsulated, exposed portion of a unitary member mounted within or on the insulative distal member 172. Intervening portions of the unitary member not functioning as an electrode may be insulated by the insulative distal member 172 or, if exposed to the surrounding environment, may be coated with an electrically insulating coating, e.g., parylene, polyurethane, silicone, epoxy, or other insulating coating.
When the tissue-piercing electrode 112 is advanced into cardiac tissue, at least one non-tissue-piercing electrode 122 may be positioned against, in intimate contact with, or in operative proximity to, a cardiac tissue surface for delivering pulses and/or sensing cardiac electrical signals produced by the patient's heart. For example, one or more non-tissue-piercing electrodes 122 may be positioned in contact with right atrial endocardial tissue for pacing and sensing in the atrium when the tissue-piercing electrode 112 is advanced into the atrial tissue and through the central fibrous body until the distal tip electrode element 142 is positioned in direct contact with ventricular tissue, e.g., ventricular myocardium and/or a portion of the ventricular conduction system.
Non-tissue-piercing electrodes 122 may be coupled to a therapy delivery circuit and a sensing circuit enclosed by the housing 130 to function collectively as a cathode electrode for delivering atrial pacing pulses and for sensing atrial electrical signals (e.g., P-waves) in combination with the proximal housing-based electrode 124 as a return anode. Switching circuitry included in the sensing circuit may be activated under the control of the control circuit to couple one or more of the non-tissue-piercing electrodes to the atrial sensing channel. Distal, non-tissue-piercing electrodes 122 may be electrically isolated from each other so that each individual one of the electrodes 122 may be individually selected by switching circuitry included in the therapy delivery circuit to serve alone or in a combination with two or more of the electrodes 122 as an atrial cathode electrode. Switching circuitry included in the therapy delivery circuit may be activated under the control of the control circuit to couple one or more of the non-tissue-piercing electrodes 122 to the atrial pacing circuit. Two or more of the non-tissue-piercing electrodes 122 may be selected at a time to operate as a multi-point atrial cathode electrode.
Certain non-tissue-piercing electrodes 122 selected for atrial pacing and/or atrial sensing may be selected based on atrial capture threshold tests, electrode impedance, P-wave signal strength in the cardiac electrical signal, or other factors. For example, a single one or any combination of two or more individual non-tissue-piercing electrodes 122 functioning as a cathode electrode that provides an optimal combination of a low pacing capture threshold amplitude and relatively high electrode-impedance may be selected to achieve reliable atrial pacing using minimal current drain from the power source.
In some instances, the distal-facing surface 138 may uniformly contact the atrial endocardial surface when the tissue-piercing electrode 112 anchors the housing 130 at the implant site. In that case, all the electrodes 122 may be selected together to form the atrial cathode. Alternatively, every other one of the electrodes 122 may be selected together to form a multi-point atrial cathode having a higher electrical impedance that is still uniformly distributed along the distal-facing surface 138. Alternatively, a subset of one or more electrodes 122 along one side of the insulative distal member 172 may be selected to provide pacing at a desired site that achieves the lowest pacing capture threshold due to the relative location of the electrodes 122 to the atrial tissue being paced.
In other instances, the distal-facing surface 138 may be oriented at an angle relative to the adjacent endocardial surface depending on the positioning and orientation at which the tissue-piercing electrode 112 enters the cardiac tissue. In this situation, one or more of the non-tissue-piercing electrodes 122 may be positioned in closer contact with the adjacent endocardial tissue than other non-tissue-piercing electrodes 122, which may be angled away from the endocardial surface. By providing multiple non-tissue-piercing electrodes along the periphery of the insulative distal member 172, the angle of the tissue-piercing electrode 112 and the housing distal end region 132 relative to the cardiac surface, e.g., the right atrial endocardial surface, may not be required to be substantially parallel. Anatomical and positional differences may cause the distal-facing surface 138 to be angled or oblique to the endocardial surface, however, multiple non-tissue-piercing electrodes 122 distributed along the periphery of the insulative distal member 172 may increase the likelihood of “good” contact between one or more electrodes 122 and the adjacent cardiac tissue to promote acceptable pacing thresholds and reliable cardiac event sensing using at least a subset of multiple electrodes 122. Contact or fixation circumferentially along the entire periphery of the insulative distal member 172 may not be required.
The non-tissue-piercing electrodes 122 are shown to each include a first portion 122a extending along the distal-facing surface 138 and a second portion 122b extending along the circumferential surface 139. The first portion 122a and the second portion 122b may be continuous exposed surfaces such that the active electrode surface wraps around a peripheral edge 176 of the insulative distal member 172 that joins the distal facing surface 138 and the circumferential surface 139. The non-tissue-piercing electrodes 122 may include one or more of the electrodes along the distal-facing surface 138, one or more electrodes along the circumferential surface 139, one or more electrodes each extending along both of the distal-facing surface 138 and the circumferential surface 139, or any combination thereof. The exposed surface of each of the non-tissue-piercing electrodes 122 may be flush with respective distal-facing surfaces 138 and/or circumferential surfaces. In other examples, each of the non-tissue-piercing electrodes 122 may have a raised surface that protrudes from the insulative distal member 172. Any raised surface of the electrodes 122, however, may define a smooth or rounded, non-tissue-piercing surface.
The distal fixation and electrode assembly 136 may seal the distal end region of the housing 130 and may provide a foundation on which the electrodes 122 are mounted. The electrodes 122 may be referred to as housing-based electrodes. The electrodes 122 may not be not carried by a shaft or other extension that extends the active electrode portion away from the housing 130, like the distal tip electrode element 142 residing at the distal tip of the helical shaft 140 extending away from the housing 130. Other examples of non-tissue-piercing electrodes presented herein that are coupled to a distal-facing surface and/or a circumferential surface of an insulative distal member include the distal housing-based ring electrode 22 (
The non-tissue-piercing electrodes 122 and other examples listed above are expected to provide more reliable and effective atrial pacing and sensing than a tissue-piercing electrode provided along the distal fixation and electrode assembly 136. The atrial chamber walls are relatively thin compared to ventricular chamber walls. A tissue-piercing atrial cathode electrode may extend too deep within the atrial tissue leading to inadvertent sustained or intermittent capture of ventricular tissue. A tissue-piercing atrial cathode electrode may lead to interference with sensing atrial signals due to ventricular signals having a larger signal strength in the cardiac electrical signal received via tissue-piercing atrial cathode electrodes that are in closer physical proximity to the ventricular tissue. The tissue-piercing electrode 112 may be securely anchored into ventricular tissue for stabilizing the implant position of the device 110 and providing reasonable certainty that the tip electrode element 142 is sensing and pacing in ventricular tissue while the non-tissue-piercing electrodes 122 are reliably pacing and sensing in the atrium. When the device 110 is implanted in the target implant region 4, e.g., as shown in
One or more of the components, such as controllers, circuitry, accelerometers, or sensors, described herein may include a processor, such as a central processing unit (CPU), computer, logic array, or other device capable of directing data coming into or out of the medical device. The controller may include one or more computing devices or processing circuitry having memory, processing, and communication hardware. The controller may include circuitry used to couple various components of the controller together or with other components operably coupled to the controller. The functions of the controller may be performed by hardware and/or as computer instructions on a non-transient computer readable storage medium.
The processor of the controller may include any one or more of a microprocessor, a microcontroller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and/or equivalent discrete or integrated logic circuitry. In some examples, the processor may include multiple components, such as any combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, and/or one or more FPGAs, as well as other discrete or integrated logic circuitry. The functions attributed to the controller or processor herein may be embodied as software, firmware, hardware, or any combination thereof. While described herein as a processor-based system, an alternative controller could utilize other components such as relays and timers to achieve the desired results, either alone or in combination with a microprocessor-based system.
In one or more embodiments, the exemplary systems, methods, and other functionality may be implemented using one or more computer programs using a computing apparatus, which may include one or more processors and/or memory. Program code and/or logic described herein may be applied to input data/information to perform functionality described herein and generate desired output data/information. The output data/information may be applied as an input to one or more other devices and/or methods as described herein or as would be applied in a known fashion. In view of the above, it will be readily apparent that the controller functionality as described herein may be implemented in any manner known to one skilled in the art
In some embodiments, any of the tissue-piercing electrodes of the present disclosure may be implanted in the basal and/or septal region of the left ventricular myocardium of the patient's heart. In particular, the tissue-piercing electrode may be implanted from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body.
Once implanted, the tissue-piercing electrode may be positioned in the target implant region 4 (
In some embodiments, the tissue-piercing electrode may be positioned in the basal septal region of the left ventricular myocardium when implanted. The basal septal region may include one or more of the basal anteroseptal area 2, basal inferoseptal area 3, mid-anteroseptal area 8, and mid-inferoseptal area 9.
In some embodiments, the tissue-piercing electrode may be positioned in the high inferior/posterior basal septal region of the left ventricular myocardium when implanted. The high inferior/posterior basal septal region of the left ventricular myocardium may include a portion of at least one of the basal inferoseptal area 3 and mid-inferoseptal area 9. For example, the high inferior/posterior basal septal region may include region 66 illustrated generally as a dashed-line boundary. As shown, the dashed line boundary represents an approximation of about where the high inferior/posterior basal septal region and may take somewhat different shape or size depending on the particular application. Without being bound by any particular theory, intraventricular synchronous pacing and/or activation may result from stimulating the high septal ventricular myocardium due to functional electrical coupling between the subendocardial Purkinje fibers and the ventricular myocardium.
The elongated element 102 may be any suitable device for insertion into the CS. For example, the elongated element 102 may be a guidewire or a catheter. In some embodiments, the elongated element 102 may be steerable.
Further, the elongated element 102 may be anchorable in the CS. Being anchorable in the CS means the elongated element 102 includes any suitable mechanism for retaining the elongated element within the CS for any period of time. In some embodiments, the elongated element 102 may include an anchorable balloon or an anchorable side helix to facilitate stable anchoring in the CS after insertion of the elongated element into the CS, which may provide a reliable reference for delivering a device to the target implant region 4 (
The elongated element 102 may provide other functionality in addition to providing a physical reference to the CS. In some embodiments, the elongated element 102 may remain in the CS and be used as part of the cardiac therapy system 2 (
The delivery catheter 200 includes an elongated body including a first portion 202 and a second portion 204, which may be integrally formed from a single piece of material or separately formed and coupled together. The first portion 202 and the second portion 204 may extend from a proximal region 210 to a respective first distal end region 206 and a respective second distal end region 208. As illustrated, the proximal region 210 may represent a proximal end region of the delivery catheter 200 or an intermediate region that is not a proximal end region of the delivery catheter 200. The delivery catheter 200 may be any suitable length to facilitate the techniques of the present disclosure. The first portion 202 and the second portion 204 may each extend longitudinally adjacent to one another, or side-by-side.
Each portion may define a lumen. A first lumen 212 defined by the first portion 202 may extend from the proximal region 210 to the first distal end region 206. A second lumen 214 defined by the second portion 204 may extend from the proximal region 210 to the second distal end region 208.
The first lumen 212 in the first distal end region 206 may be described as extending along a first axis 216. The second lumen 214 in the second distal end region 208 may be described as extending along a second axis 218. The first axis 216 and the second axis 218 form, or define, an angle 220 such that the second axis points toward the LV apex of the patient's heart when the first axis points into the CS. For example, the second axis may point toward the LV apex when the elongated element 102 is advanced through the first lumen 212 at least partially along the first axis 216 and inserted into and optionally anchored in the CS. A device advanced through the second lumen 214 may be directed to an implantation site in the triangle of Koch region when the elongated element 102 is advanced through the first lumen 212 into the CS and the second axis 218 points to the LV apex.
Any suitable angle 220 may be used. The angle 220 may depend on the physiology of the particular patient. In some embodiments, the angle 220 may be at least about 30, 40, 50, 60, or even 70 degrees. In some embodiments, the angle 220 may be at most about 110, 100, 90, 80, or even 70 degrees. For example, the angle 200 may be in a range from about 50 degrees to about 90 degrees. As used herein, “at most” may be used interchangeably with “less than or equal to,” and “at least” may be used interchangeably with “greater than or equal to.”
In one or more embodiments, a different angle may be defined between a first vector perpendicular to the CS ostium of the patient's heart and a second vector from the CS ostium to the LV apex, which may be at least about 30, 40, 50, 70, or even 70 degrees or at most about 110, 100, 90, 80, or even 70 degrees.
In the illustrated embodiment, the proximal region 210 of the second portion 204 is aligned with the first axis 216 and the second distal end region 208 is aligned to the second axis 218. A curved region 222 of the second portion 204 may be defined between the second distal end region 208 and the proximal region 210. The curved region 222 provides a transition between the proximal region 210 and the distal end region, which may be more gradual than illustrated in some embodiments. The first portion 202 may extend relatively linearly along the first axis 216 from the proximal region 210 to the first distal end region 206.
In some embodiments, the second distal end region 208 may also be curved. The alignment of the second distal end region 208 may be defined by the most distal segment of the distal end region or, in particular, the orientation of the medical device extending through the second lumen 214 in the distal end region.
The angle 220 may be described as fixed or deflectable (e.g., resilient). When the angle 220 is deflectable, any suitable mechanism may be used to control, define, or change the angle. For example, in some embodiments, a pull wire may be used to define a deflectable angle 220. In general, the delivery catheter 200 may be formed of any suitable flexible or semi-flexible material for delivery of a device to the patient's heart. In some embodiments, the angle 220 may be defined as a fixed angle when the material used to form some or all of the delivery catheter 200 is sufficiently stiff to prevent deflection away from the target implant region 4 during delivery. The second distal end region 208 or the curved region 222 of the second portion 204 may be formed of the same or different material than the remainder of the second portion, such as the proximal region 210, or than the first portion 202. In some embodiments, the second distal end region 208 or the curved region 222 may be formed of a stiffer material than the proximal region 210 or the first portion 202 (e.g., having a higher Shore durometer). For example, the second distal end region 208 or the curved region 222 may be formed of about a 55D material and the proximal region 210 or the first portion 202 may be formed of about a 35D or 40D material.
In some embodiments, the second portion 204 may include a braided structure to define the second lumen 214 to facilitate shape retention. In other embodiments, the second portion 204 may use a larger wall thickness than the first portion 202 to facilitate shape retention.
Any suitable technique may be used to form the delivery catheter 200. In some embodiments, the delivery catheter 200 may be made of a single extrusion. In other embodiments, the delivery catheter 200 may be made using three-dimensional (3D) machine printing. Any suitable material may be used to form the delivery catheter 200, such as an elastomer. Non-limiting examples of materials that may be used to form the delivery catheter 200 include one or more of polyether block amide (such as PEBAX), polyurethane, or a nylon.
The angled or curved regions of the second portion 204 may be straightened while guiding the delivery catheter 200 to the patient's heart. In some embodiments, a dilator that tracks over a guidewire may be inserted into the second lumen 214 and into the curved region 222 and the second distal end region 208 to straighten the second portion 204. Once the second distal end region 208 reaches the patient's heart, the dilator and the guidewire may be retracted and removed to allow the second portion 204 to take shape and form the angle 220 with the first portion 202.
In some embodiments, the first distal end region 206 may extend into the CS (e.g., as opposed to merely guiding the elongated element 102 into the CS). In the illustrated embodiment, the first portion 202 extends more distally than the second portion 204 such that the first distal end region 206 is more distal than the second distal end region 208 along the first axis 216, which may facilitate insertion and anchoring in the CS. The first portion 202 may extend any suitable amount beyond the second portion 204 to facilitate insertion and anchoring in the CS. For example, the first portion 202 may extend at least one inch or may extend at most two inches beyond the second portion 204.
In other embodiments, the first distal end region 206 may extend toward the CS but may not extend into the CS. In one embodiment, the first distal end region 206 may extend no more distally than the second distal end region 208 or the curved region 222.
The delivery catheter 200 may be a passive or active device. In the illustrated embodiment, the delivery catheter 200 may be described as an active device including one or more electrodes 224. The electrodes 224 may be coupled to the second distal end region 208 of the second portion 204 and used to map atrial activation prior to implanting the device in the target implant region 4. The one or more electrodes 224 may be electrically coupled to a proximal end of the delivery catheter 200 using conductors (not shown) extending through the proximal region 210. In the illustrated embodiment, four electrodes 224 are arranged along a distal face of the second portion 204 around an opening 226 at the end of the second lumen 214. The electrodes 224 may be placed against the triangle of Koch region of the RA to map atrial activation before a device is implanted from the second lumen 214 through the opening 226.
The first lumen 212 and the second lumen 214 may be the same or a different size to accommodate various types of devices. As shown in
As used herein with reference to delivery catheters, the term “lateral” refers to a direction away from a longitudinal axis, such as the first axis defined by the first portion 302 or the second axis defined by the second portion 304. In some embodiments, lateral may be a direction that is orthogonal to a longitudinal axis.
The channel 342 and the complementary protrusion 344 may have any suitable depth and complementary height, respectively, to facilitate guidance. In some embodiments, the depth or height may be at least about 0.5, 1, 1.5, or even 2 mm. In some embodiments, the depth or height may be at most about 3, 2.5, 2, 1.5, or even 1 mm. For example, the depth or height may be in a range from about 1 mm to about 2 mm.
The channel 342 may extend any suitable length along the first portion 302. In some embodiments, the channel 342 extends along the entire length of the first portion 302. In some embodiments, the channel 342 may include a distal end that stops short of a distal end of the first portion 302.
The protrusion 344 may extend any suitable length along the second portion 304. In some embodiments, the protrusion 344 is disposed at one or more discrete locations on the elongated body of the second portion 304. For example, each protrusion 344 may have a length that is at most about 1, 2, 3, or even 4 centimeters (cm) along a length of the second portion 304. In one embodiment, the protrusion 344 is disposed at only one discrete location. In other embodiments, the protrusion 344 extends along a greater length of the second portion 304. For example, the protrusion 344 may have a length that is at least about 1, 2, 3, or even 4 cm up to the entire length of the second portion 304. The protrusion 344 may extend continuously or discretely.
The protrusion 344 may be positioned at any suitable location along the second portion 304. In some embodiments, the discrete protrusion 344 may be positioned on the distal end region, the curved region, the proximal region, a non-curved region, or between any of these regions.
In general, the delivery catheter may be advanced toward the CS over an elongated element, such as a guidewire or another catheter, using a first lumen that extends through the first distal end region of the delivery catheter.
In some embodiments, the guidewire may be anchored in the CS. For example, the guidewire may be advanced more than about 1, 2, 3, 4, 5, or even 6 cm into the CS and even into the great cardiac vein (GCV) to anchor the guidewire in the CS. The method 410 may include removing the cannulation catheter and leaving guidewire in place 414.
The method 410 may also include advancing the delivery catheter, or dual-lumen catheter, over the guidewire toward the CS using the first lumen of the delivery catheter 416. The delivery catheter may be tracked along the guidewire until the delivery catheter prevents further advancement. For example, a portion forming the second lumen may be impeded from further advancement by the CS ostium.
The method 410 may include orienting the second lumen of the delivery catheter toward the triangle of Koch region of the patient's heart 418. In some embodiments, the delivery catheter is torqued so that the second portion of the delivery catheter defining the second lumen, which may have a fixed or deflectable curve, comes into contact with tissue in the target implant location in the triangle of Koch region.
The method 410 may also include implanting a device through the second lumen and into the triangle of Koch region 420. The second lumen may direct the device from the implant location toward the LV apex, which may facilitate implanting the device for VfA cardiac therapy. Once in position, the device may be fixed at the implant location. The method 410 may include removing the delivery catheter 422. For example, the delivery catheter may be slit and retracted.
The method 430 may also include advancing the delivery catheter, or dual-lumen catheter, over the therapy catheter toward the CS using the first lumen of the delivery catheter 416. The delivery catheter may be tracked along the therapy catheter until the delivery catheter prevents further advancement. For example, a portion forming the second lumen may be impeded from further advancement by the CS ostium.
The method 430 may include orienting the second lumen of the delivery catheter toward the triangle of Koch region of the patient's heart 436. In some embodiments, the delivery catheter is torqued so that the second portion of the delivery catheter defining the second lumen, which may have a fixed or deflectable curve, comes into contact with the tissue in the target implant location in the triangle of Koch region.
The method 430 may also include implanting a device through the second lumen and into the triangle of Koch region 438. The second lumen may direct the device from the implant location toward the LV apex, which may facilitate implanting the device for VfA cardiac therapy. Once in position, the device may be fixed at the implant location. The method 430 may include removing the delivery catheter 440. For example, the delivery catheter may be slit and retracted. The therapy catheter may remain or be removed. The guidewire may also be removed, for example, when the delivery catheter is removed.
The method 450 may include translatably coupling the first and second portions using an interlocking assembly, such as a channel and complementary protrusion, 454. In particular, a protrusion of the second portion may be inserted into the channel of the first portion.
The method 450 may include advancing the second portion defining the second lumen over the first portion toward the CS 456. The protrusion of second portion may be tracked along the channel of the first portion until the second portion prevents further advancement. For example, the second portion forming the second lumen may be impeded from further advancement by the CS ostium.
The method 450 may include orienting the second lumen of the second portion toward the triangle of Koch region of the patient's heart 458. In some embodiments, the delivery catheter is torqued so that the second portion of the delivery catheter, which may have a fixed or deflectable curve, comes into contact with the tissue in the target implant location in the triangle of Koch region.
The method 450 may also include implanting a device through the second lumen and into the triangle of Koch region 460. The second lumen may direct the device from the implant location toward the LV apex, which may facilitate implanting the device for VfA cardiac therapy. Once in position, the device may be fixed at the implant location. The method 450 may include removing the delivery catheter 462. For example, the delivery catheter may be slit and retracted.
ILLUSTRATIVE EMBODIMENTSWhile the present disclosure is not so limited, an appreciation of various aspects of the disclosure will be gained through a discussion of the specific illustrative embodiments provided below. Various modifications of the illustrative embodiments, as well as additional embodiments of the disclosure, will become apparent herein.
In illustrative embodiment A1, an implantable medical device delivery system includes an elongated element anchorable in the coronary sinus (CS) of a patient's heart. The system also includes a delivery catheter with an elongated body having a first portion defining a first lumen and a second portion defining a second lumen. The first lumen in a first distal end region of the first portion extends along a first axis and the second lumen in a second distal end region of the second portion extends along a second axis forming an angle with the first axis. The second axis points toward the left ventricular (LV) apex of the patient's heart when the anchorable elongated element is advanced through the first lumen into the CS.
In illustrative embodiment A2, the system of any A illustrative embodiment further includes the delivery catheter configured such that an implantable medical device advanced through the second lumen is directed to an implantation site in the triangle of Koch region of the patient's heart when the elongated element is advanced through the first lumen into the CS and the second axis points to the LV apex.
In illustrative embodiment A3, the system of illustrative embodiment A2 further includes the implantable medical device. The implantable medical device includes at least one electrode to provide cardiac therapy to or sense electrical activity of the right atrium (RA) or the LV of the patient's heart.
In illustrative embodiment A4, the system of any A illustrative embodiment further includes the implantable medical device being a leaded implantable medical device.
In illustrative embodiment A5, the system of any A illustrative embodiment further includes the angle being a fixed angle.
In illustrative embodiment A6, the system of any A illustrative embodiment further includes the elongated element being a guidewire or a catheter.
In illustrative embodiment A7, the system of any A illustrative embodiment further includes the elongated element having one or both of an anchorable balloon and an anchorable side helix.
In illustrative embodiment A8, the system of any A illustrative embodiment further includes the elongated element having one or more electrodes.
In illustrative embodiment A9, the system of any A illustrative embodiment further includes one or more electrodes coupled to the second distal end region of the second portion to map atrial activation
In illustrative embodiment A10, the system of any A illustrative embodiment further includes the second distal end region being more flexible than one or both of the proximal region of the elongated body and the elongated element.
In illustrative embodiment A11, the system of any A illustrative embodiment further includes the second distal end region being distal to the first distal end region relative to the first axis.
In illustrative embodiment A12, the system of any A illustrative embodiment further includes the angle being at most 90 degrees.
In illustrative embodiment B1, a delivery catheter includes a first portion advanceable into the coronary sinus (CS) of a patient's heart having an elongated body defining a first lumen and an exterior channel. When the first portion is advanced into the CS, a region of the first portion adjacent to the CS ostium of the patient's heart extends along a first axis. The device includes a second portion having an elongated body defining a second lumen and having a laterally-extending protrusion configured to be received into the exterior channel of the first portion to slidably guide the second portion along a length of the first portion. A distal end region of the second portion extends along a second axis when the protrusion is engaged in the channel forming a fixed angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first portion is advanced into the CS.
In illustrative embodiment B2, the system of any B illustrative embodiment further includes an implantable medical device advanced through the second lumen being directed to an implantation site in the triangle of Koch region of the patient's heart when the first portion is advanced into the CS and the second axis points to the LV apex.
In illustrative embodiment B3, the system of illustrative embodiment B2 further includes the implantable medical device. The implantable medical device includes at least one electrode to provide cardiac therapy to or sense electrical activity of the right atrium (RA) or the LV of the patient's heart.
In illustrative embodiment B4, the system of any B illustrative embodiment further includes the protrusion being disposed at a discrete location on the elongated body of the second portion.
In illustrative embodiment B5, the system of any B illustrative embodiment further includes one or more electrodes being coupled to the distal end region of the second portion to map atrial activation.
In illustrative embodiment C1, a method of delivering an implantable medical device includes advancing a first distal end region of a first portion of a dual-lumen catheter toward the coronary sinus (CS) of a patient's heart. The first portion defines a first lumen and the first distal end region extends along a first axis. The method includes orienting a second distal end region of a second portion of the dual-lumen catheter toward the triangle of Koch region of the patient's heart. The second portion defines a second lumen and the second distal end region extends along a second axis forming an angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the first distal end region is fully advanced toward the CS.
In illustrative embodiment C2, the method of any C illustrative embodiment further includes rotating the dual-lumen catheter to point the second axis toward the LV apex, advancing an implantable medical device through the second lumen of the dual-lumen catheter, and fixing the implantable medical device to an implantation site in the triangle of Koch region of the patient's heart.
In illustrative embodiment C3, the method of any C illustrative embodiment further includes advancing an elongated element into the coronary sinus (CS) of the patient's heart. When the elongated element is advanced into the CS, a portion of the elongated element adjacent to the CS ostium extends along the first axis. The method includes advancing the dual-lumen catheter over the elongated element using the first lumen to guide the first distal end region toward the CS.
In illustrative embodiment C4, the method of illustrative embodiment C3 further includes the elongated element having a guidewire and the method further including advancing a cannulation catheter into the CS of the patient's heart, advancing the guidewire through the cannulation catheter into the CS, and removing the cannulation catheter.
In illustrative embodiment C5, the method of any C illustrative embodiment further includes the first portion defining an exterior channel and the second portion having a laterally-extending protrusion configured to be received into the exterior channel. The method includes advancing the second portion guided by first portion using the protrusion engaged with the exterior channel, orienting the second portion to point the second axis toward the LV apex, advancing an implantable medical device through the second lumen of the dual-lumen catheter, and fixing the implantable medical device to an implantation site in the triangle of Koch region of the patient's heart.
Thus, various embodiments of the DELIVERY SYSTEMS FOR VFA CARDIAC THERAPY are disclosed. The techniques of the present disclosure provide a delivery catheter that stabilizes an implantable medical device at an appropriate location and orientation for implantation at a target implant region, particularly in the triangle of Koch region to deliver pacing to the LV, using the CS as a physical reference.
It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.
In one or more examples, the described techniques may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include non-transitory computer-readable media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer).
Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” as used herein may refer to any of the foregoing structure or any other physical structure suitable for implementation of the described techniques. Also, the techniques could be fully implemented in one or more circuits or logic elements.
All references and publications cited herein are expressly incorporated herein by reference in their entirety for all purposes, except to the extent any aspect directly contradicts this disclosure.
All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims may be understood as being modified either by the term “exactly” or “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein or, for example, within typical ranges of experimental error.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range. Herein, the terms “at most” or “no greater than” a number (e.g., up to 50) includes the number (e.g., 50), and the term “at least” or “no less than” a number (e.g., no less than 5) includes the number (e.g., 5).
Terms related to orientation, such as “proximal,” “distal,” “side,” and “end,” are used to describe relative positions of components and are not meant to limit the orientation of the embodiments contemplated.
The terms “coupled” or “connected” refer to elements being attached to each other either directly (in direct contact with each other) or indirectly (having one or more elements between and attaching the two elements). Either term may be modified by “operatively” and “operably,” which may be used interchangeably, to describe that the coupling or connection is configured to allow the components to interact to carry out functionality.
As used herein, the term “configured to” may be used interchangeably with the terms “adapted to” or “structured to” unless the content of this disclosure clearly dictates otherwise.
Th singular forms “a,” “an,” and “the” encompass embodiments having plural referents unless its context clearly dictates otherwise.
The term “or” is generally employed in its inclusive sense, for example, to mean “and/or” unless the context clearly dictates otherwise.
The term “and/or” means one or all of the listed elements or a combination of at least two of the listed elements.
The phrases “at least one of,” “comprises at least one of,” and “one or more of” followed by a list refers to any one of the items in the list and any combination of two or more items in the list.
As used herein, “have,” “having,” “include,” “including,” “comprise,” “comprising” or the like are used in their open-ended sense, and generally mean “including, but not limited to.” It will be understood that “consisting essentially of,” “consisting of,” and the like are subsumed in “comprising,” and the like.
Reference to “one embodiment,” “an embodiment,” “certain embodiments,” or “some embodiments,” etc., means that a particular feature, configuration, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of such phrases in various places throughout are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, configurations, compositions, or characteristics may be combined in any suitable manner in one or more embodiments.
Claims
1. A method of delivering an implantable medical device comprising:
- advancing a first distal end region of a first portion of a dual-lumen catheter toward the coronary sinus (CS) of a patient's heart, wherein the first portion defines a first lumen and the first distal end region extends along a first axis; and
- orienting a second distal end region of a second portion of the dual-lumen catheter toward the triangle of Koch region of the patient's heart, wherein the second portion defines a second lumen and the second distal end region extends along a second axis forming an angle with the first axis such that the second axis points toward the left ventricular (LV) apex of the patient's heart when the second portion is located in the right atrium (RA) and the first distal end region is fully advanced toward the CS wherein, the angle is between 30 degree to 110 degree.
2. The method according to claim 1, further comprising:
- rotating the dual-lumen catheter to point the second axis toward the LV apex;
- advancing an implantable medical device through the second lumen of the dual-lumen catheter; and
- fixing the implantable medical device to an implantation site in the triangle of Koch region of the patient's heart.
3. The method according to claim 1, further comprising:
- advancing an elongated element into the coronary sinus (CS) of the patient's heart, wherein when the elongated element is advanced into the CS, a portion of the elongated element adjacent to the CS ostium extends along the first axis; and
- advancing the dual-lumen catheter over the elongated element using the first lumen to guide the first distal end region toward the CS.
4. The method according to claim 3, wherein the elongated element comprises a guidewire, and the method further comprises:
- advancing a cannulation catheter into the CS of the patient's heart;
- advancing the guidewire through the cannulation catheter into the CS; and
- removing the cannulation catheter.
5. The method according to claim 1, wherein the first portion defines an exterior channel and the second portion comprises a laterally-extending protrusion configured to be received into the exterior channel, further comprising: fixing the implantable medical device to an implantation site in the triangle of Koch region of the patient's heart.
- advancing the second portion guided by first portion using the protrusion engaged with the exterior channel;
- orienting the second portion to point the second axis toward the LV apex;
- advancing an implantable medical device through the second lumen of the dual-lumen catheter; and
3835864 | September 1974 | Rasor et al. |
3865118 | February 1975 | Bures |
3943936 | March 16, 1976 | Rasor et al. |
3949757 | April 13, 1976 | Sabel |
4142530 | March 6, 1979 | Wittkampf |
4151513 | April 24, 1979 | Menken et al. |
4157720 | June 12, 1979 | Greatbatch |
RE30366 | August 12, 1980 | Rasor et al. |
4243045 | January 6, 1981 | Mass |
4250884 | February 17, 1981 | Hartlaub et al. |
4256115 | March 17, 1981 | Bilitch |
4263919 | April 28, 1981 | Levin |
4280502 | July 28, 1981 | Baker, Jr. et al. |
4289144 | September 15, 1981 | Gilman |
4310000 | January 12, 1982 | Lindemans |
4312354 | January 26, 1982 | Walters |
4323081 | April 6, 1982 | Wiebusch |
4332259 | June 1, 1982 | McCorkle, Jr. |
4357946 | November 9, 1982 | Dutcher et al. |
4365639 | December 28, 1982 | Goldreyer |
4374382 | February 15, 1983 | Markowitz et al. |
4393883 | July 19, 1983 | Smyth et al. |
4440173 | April 3, 1984 | Hudziak et al. |
4476868 | October 16, 1984 | Thompson |
4479500 | October 30, 1984 | Smits |
4522208 | June 11, 1985 | Buffet |
4537200 | August 27, 1985 | Widrow |
4546777 | October 15, 1985 | Groch et al. |
4556063 | December 3, 1985 | Thompson et al. |
4562841 | January 7, 1986 | Brockway et al. |
4574814 | March 11, 1986 | Buffet |
4593702 | June 10, 1986 | Ski et al. |
4593955 | June 10, 1986 | Leiber |
4630611 | December 23, 1986 | King |
4635639 | January 13, 1987 | Hakala et al. |
4674508 | June 23, 1987 | DeCote |
4712554 | December 15, 1987 | Garson |
4729376 | March 8, 1988 | DeCote |
4754753 | July 5, 1988 | King |
4759366 | July 26, 1988 | Callaghan |
4776338 | October 11, 1988 | Lekholm et al. |
4787389 | November 29, 1988 | Tarjan |
4793353 | December 27, 1988 | Borkan |
4819662 | April 11, 1989 | Heil et al. |
4830006 | May 16, 1989 | Haluska et al. |
4858610 | August 22, 1989 | Callaghan et al. |
4865037 | September 12, 1989 | Chin et al. |
4886064 | December 12, 1989 | Strandberg |
4887609 | December 19, 1989 | Cole, Jr. |
4928688 | May 29, 1990 | Mower |
4953564 | September 4, 1990 | Berthelsen |
4967746 | November 6, 1990 | Vandegriff |
4987897 | January 29, 1991 | Funke |
4989602 | February 5, 1991 | Sholder et al. |
5012806 | May 7, 1991 | De Bellis |
5036849 | August 6, 1991 | Hauck et al. |
5040534 | August 20, 1991 | Mann et al. |
5058581 | October 22, 1991 | Silvian |
5078134 | January 7, 1992 | Heilman et al. |
5107850 | April 28, 1992 | Olive |
5109845 | May 5, 1992 | Yuuchi et al. |
5113859 | May 19, 1992 | Funke |
5113869 | May 19, 1992 | Nappholz et al. |
5117824 | June 2, 1992 | Keimel et al. |
5127401 | July 7, 1992 | Grievous et al. |
5133353 | July 28, 1992 | Hauser |
5144950 | September 8, 1992 | Stoop et al. |
5154170 | October 13, 1992 | Bennett et al. |
5170784 | December 15, 1992 | Ramon et al. |
5174289 | December 29, 1992 | Cohen |
5179945 | January 19, 1993 | Van Hofwegen et al. |
5193539 | March 16, 1993 | Schulman et al. |
5193540 | March 16, 1993 | Schulman et al. |
5241961 | September 7, 1993 | Henry |
5243977 | September 14, 1993 | Trabucco et al. |
5255692 | October 26, 1993 | Neubauer et al. |
5259387 | November 9, 1993 | dePinto |
5269326 | December 14, 1993 | Verrier |
5284136 | February 8, 1994 | Hauck et al. |
5300107 | April 5, 1994 | Stokes et al. |
5301677 | April 12, 1994 | Hsung |
5305760 | April 26, 1994 | McKown et al. |
5312439 | May 17, 1994 | Loeb |
5313953 | May 24, 1994 | Yomtov et al. |
5314459 | May 24, 1994 | Swanson et al. |
5318594 | June 7, 1994 | Limousin et al. |
5318597 | June 7, 1994 | Hauck et al. |
5324316 | June 28, 1994 | Schulman et al. |
5331966 | July 26, 1994 | Bennett et al. |
5334222 | August 2, 1994 | Salo et al. |
5342408 | August 30, 1994 | Decoriolis et al. |
5370667 | December 6, 1994 | Alt |
5372606 | December 13, 1994 | Lang et al. |
5376106 | December 27, 1994 | Stahmann et al. |
5383915 | January 24, 1995 | Adams |
5388578 | February 14, 1995 | Yomtov et al. |
5404877 | April 11, 1995 | Nolan et al. |
5405367 | April 11, 1995 | Schulman et al. |
5411031 | May 2, 1995 | Yomtov |
5411525 | May 2, 1995 | Swanson et al. |
5411535 | May 2, 1995 | Fujii et al. |
5456691 | October 10, 1995 | Snell |
5458622 | October 17, 1995 | Alt |
5466246 | November 14, 1995 | Silvian |
5468254 | November 21, 1995 | Hahn et al. |
5472453 | December 5, 1995 | Alt |
5522866 | June 4, 1996 | Fernald |
5540727 | July 30, 1996 | Tockman et al. |
5545186 | August 13, 1996 | Olson et al. |
5545202 | August 13, 1996 | Dahl et al. |
5554177 | September 10, 1996 | Kieval et al. |
5562711 | October 8, 1996 | Yerich et al. |
5571146 | November 5, 1996 | Jones et al. |
5591214 | January 7, 1997 | Lu |
5620466 | April 15, 1997 | Haefner et al. |
5634938 | June 3, 1997 | Swanson et al. |
5649968 | July 22, 1997 | Alt et al. |
5662688 | September 2, 1997 | Haefner et al. |
5674259 | October 7, 1997 | Gray |
5683426 | November 4, 1997 | Greenhut et al. |
5683432 | November 4, 1997 | Goedeke et al. |
5706823 | January 13, 1998 | Wodlinger |
5709215 | January 20, 1998 | Perttu et al. |
5720770 | February 24, 1998 | Nappholz et al. |
5728140 | March 17, 1998 | Salo et al. |
5728154 | March 17, 1998 | Crossett et al. |
5741314 | April 21, 1998 | Daly et al. |
5741315 | April 21, 1998 | Lee et al. |
5749909 | May 12, 1998 | Schroeppel et al. |
5752976 | May 19, 1998 | Duffin et al. |
5752977 | May 19, 1998 | Grievous et al. |
5755736 | May 26, 1998 | Gillberg et al. |
5759199 | June 2, 1998 | Snell et al. |
5774501 | June 30, 1998 | Halpern et al. |
5792195 | August 11, 1998 | Carlson et al. |
5792202 | August 11, 1998 | Rueter |
5792203 | August 11, 1998 | Schroeppel |
5792205 | August 11, 1998 | Alt et al. |
5792208 | August 11, 1998 | Gray |
5814089 | September 29, 1998 | Stokes et al. |
5817130 | October 6, 1998 | Cox et al. |
5827216 | October 27, 1998 | Igo et al. |
5836985 | November 17, 1998 | Goyal et al. |
5836987 | November 17, 1998 | Baumann et al. |
5842977 | December 1, 1998 | Lesho et al. |
5855593 | January 5, 1999 | Olson et al. |
5873894 | February 23, 1999 | Vandegriff et al. |
5891184 | April 6, 1999 | Lee et al. |
5897586 | April 27, 1999 | Molina |
5899876 | May 4, 1999 | Flower |
5899928 | May 4, 1999 | Sholder et al. |
5919214 | July 6, 1999 | Ciciarelli et al. |
5928271 | July 27, 1999 | Hess et al. |
5935078 | August 10, 1999 | Feierbach |
5941906 | August 24, 1999 | Barreras et al. |
5944744 | August 31, 1999 | Paul et al. |
5954757 | September 21, 1999 | Gray |
5978713 | November 2, 1999 | Prutchi et al. |
5991660 | November 23, 1999 | Goyal |
5991661 | November 23, 1999 | Park et al. |
5999848 | December 7, 1999 | Gord et al. |
5999857 | December 7, 1999 | Weijand et al. |
6016445 | January 18, 2000 | Baura |
6026320 | February 15, 2000 | Carlson et al. |
6029085 | February 22, 2000 | Olson et al. |
6041250 | March 21, 2000 | dePinto |
6044298 | March 28, 2000 | Salo et al. |
6044300 | March 28, 2000 | Gray |
6055454 | April 25, 2000 | Heemels |
6073050 | June 6, 2000 | Griffith |
6076016 | June 13, 2000 | Feierbach |
6077236 | June 20, 2000 | Cunningham |
6080187 | June 27, 2000 | Alt et al. |
6083248 | July 4, 2000 | Thompson |
6106551 | August 22, 2000 | Crossett et al. |
6115636 | September 5, 2000 | Ryan |
6128526 | October 3, 2000 | Stadler et al. |
6132456 | October 17, 2000 | Sommer et al. |
6141581 | October 31, 2000 | Olson et al. |
6141588 | October 31, 2000 | Cox et al. |
6141592 | October 31, 2000 | Pauly |
6144879 | November 7, 2000 | Gray |
6162195 | December 19, 2000 | Igo et al. |
6164284 | December 26, 2000 | Schulman et al. |
6167310 | December 26, 2000 | Grevious |
6201993 | March 13, 2001 | Kruse et al. |
6208894 | March 27, 2001 | Schulman et al. |
6211799 | April 3, 2001 | Post et al. |
6221011 | April 24, 2001 | Bardy |
6240316 | May 29, 2001 | Richmond et al. |
6240317 | May 29, 2001 | Villaseca et al. |
6256534 | July 3, 2001 | Dahl |
6259947 | July 10, 2001 | Olson et al. |
6266558 | July 24, 2001 | Gozani et al. |
6266567 | July 24, 2001 | Ishikawa et al. |
6270457 | August 7, 2001 | Bardy |
6272377 | August 7, 2001 | Sweeney et al. |
6273856 | August 14, 2001 | Sun et al. |
6277072 | August 21, 2001 | Bardy |
6280380 | August 28, 2001 | Bardy |
6285903 | September 4, 2001 | Rosenthal et al. |
6285907 | September 4, 2001 | Kramer et al. |
6292698 | September 18, 2001 | Duffin et al. |
6295473 | September 25, 2001 | Rosar |
6297943 | October 2, 2001 | Carson |
6298271 | October 2, 2001 | Weijand |
6307751 | October 23, 2001 | Bodony et al. |
6312378 | November 6, 2001 | Bardy |
6315721 | November 13, 2001 | Schulman et al. |
6336903 | January 8, 2002 | Bardy |
6345202 | February 5, 2002 | Richmond et al. |
6351667 | February 26, 2002 | Godie |
6351669 | February 26, 2002 | Hartley et al. |
6353759 | March 5, 2002 | Hartley et al. |
6358203 | March 19, 2002 | Bardy |
6361780 | March 26, 2002 | Ley et al. |
6368284 | April 9, 2002 | Bardy |
6371922 | April 16, 2002 | Baumann et al. |
6393316 | May 21, 2002 | Gillberg et al. |
6398728 | June 4, 2002 | Bardy |
6400982 | June 4, 2002 | Sweeney et al. |
6400990 | June 4, 2002 | Silvian |
6408208 | June 18, 2002 | Sun |
6409674 | June 25, 2002 | Brockway et al. |
6411848 | June 25, 2002 | Kramer et al. |
6424865 | July 23, 2002 | Ding |
6434429 | August 13, 2002 | Kraus et al. |
6438410 | August 20, 2002 | Hsu et al. |
6438417 | August 20, 2002 | Rockwell et al. |
6438421 | August 20, 2002 | Stahmann et al. |
6440066 | August 27, 2002 | Bardy |
6441747 | August 27, 2002 | Khair et al. |
6442426 | August 27, 2002 | Kroll |
6442432 | August 27, 2002 | Lee |
6443891 | September 3, 2002 | Grevious |
6445953 | September 3, 2002 | Bulkes et al. |
6453200 | September 17, 2002 | Koslar |
6459929 | October 1, 2002 | Hopper et al. |
6470215 | October 22, 2002 | Kraus et al. |
6471645 | October 29, 2002 | Warkentin et al. |
6480745 | November 12, 2002 | Nelson et al. |
6487443 | November 26, 2002 | Olson et al. |
6490487 | December 3, 2002 | Kraus et al. |
6498951 | December 24, 2002 | Larson et al. |
6507755 | January 14, 2003 | Gozani et al. |
6507759 | January 14, 2003 | Prutchi et al. |
6508771 | January 21, 2003 | Padmanabhan et al. |
6512940 | January 28, 2003 | Brabec et al. |
6522915 | February 18, 2003 | Ceballos et al. |
6526311 | February 25, 2003 | Begemann |
6539253 | March 25, 2003 | Thompson et al. |
6542775 | April 1, 2003 | Ding et al. |
6544270 | April 8, 2003 | Yongxing |
6553258 | April 22, 2003 | Stahmann et al. |
6561975 | May 13, 2003 | Pool et al. |
6564807 | May 20, 2003 | Schulman et al. |
6574506 | June 3, 2003 | Kramer et al. |
6584351 | June 24, 2003 | Ekwall |
6584352 | June 24, 2003 | Combs et al. |
6597948 | July 22, 2003 | Rockwell et al. |
6597951 | July 22, 2003 | Kramer et al. |
6622046 | September 16, 2003 | Fraley et al. |
6623518 | September 23, 2003 | Thompson et al. |
6628985 | September 30, 2003 | Sweeney et al. |
6647292 | November 11, 2003 | Bardy et al. |
6666844 | December 23, 2003 | Igo et al. |
6689117 | February 10, 2004 | Sweeney et al. |
6690959 | February 10, 2004 | Thompson |
6694189 | February 17, 2004 | Begemann |
6704602 | March 9, 2004 | Berg et al. |
6718212 | April 6, 2004 | Parry et al. |
6721597 | April 13, 2004 | Bardy et al. |
6738670 | May 18, 2004 | Almendinger et al. |
6746797 | June 8, 2004 | Benson et al. |
6749566 | June 15, 2004 | Russ |
6754528 | June 22, 2004 | Bardy et al. |
6758810 | July 6, 2004 | Lebel et al. |
6763269 | July 13, 2004 | Cox |
6778860 | August 17, 2004 | Ostroff et al. |
6788971 | September 7, 2004 | Sloman et al. |
6788974 | September 7, 2004 | Bardy et al. |
6804558 | October 12, 2004 | Haller et al. |
6807442 | October 19, 2004 | Myklebust et al. |
6847844 | January 25, 2005 | Sun et al. |
6869404 | March 22, 2005 | Schulhauser et al. |
6871095 | March 22, 2005 | Stahmann et al. |
6871096 | March 22, 2005 | Hill |
6878112 | April 12, 2005 | Linberg et al. |
6885889 | April 26, 2005 | Chinchoy |
6892094 | May 10, 2005 | Ousdigian et al. |
6897788 | May 24, 2005 | Khair et al. |
6904315 | June 7, 2005 | Panken et al. |
6922592 | July 26, 2005 | Thompson et al. |
6931282 | August 16, 2005 | Esler |
6931286 | August 16, 2005 | Sigg et al. |
6934585 | August 23, 2005 | Schloss et al. |
6941169 | September 6, 2005 | Pappu |
6957107 | October 18, 2005 | Rogers et al. |
6978176 | December 20, 2005 | Lattouf |
6980675 | December 27, 2005 | Evron et al. |
6985773 | January 10, 2006 | Von Arx et al. |
6990375 | January 24, 2006 | Kloss et al. |
6993389 | January 31, 2006 | Ding et al. |
7001366 | February 21, 2006 | Ballard |
7003350 | February 21, 2006 | Denker et al. |
7006864 | February 28, 2006 | Echt et al. |
7013176 | March 14, 2006 | Ding et al. |
7013178 | March 14, 2006 | Reinke et al. |
7027871 | April 11, 2006 | Bumes et al. |
7031711 | April 18, 2006 | Brown et al. |
7031771 | April 18, 2006 | Brown et al. |
7035684 | April 25, 2006 | Lee et al. |
7050849 | May 23, 2006 | Echt et al. |
7060031 | June 13, 2006 | Webb et al. |
7063693 | June 20, 2006 | Guenst |
7082336 | July 25, 2006 | Ransbury et al. |
7085606 | August 1, 2006 | Flach et al. |
7092758 | August 15, 2006 | Sun et al. |
7110824 | September 19, 2006 | Amundson et al. |
7120504 | October 10, 2006 | Osypka |
7130681 | October 31, 2006 | Gebhardt et al. |
7139613 | November 21, 2006 | Reinke et al. |
7142912 | November 28, 2006 | Wagner et al. |
7146225 | December 5, 2006 | Guenst et al. |
7146226 | December 5, 2006 | Lau et al. |
7149581 | December 12, 2006 | Goedeke |
7149588 | December 12, 2006 | Lau et al. |
7158839 | January 2, 2007 | Lau |
7162307 | January 9, 2007 | Patrias |
7164952 | January 16, 2007 | Lau et al. |
7177700 | February 13, 2007 | Cox |
7181284 | February 20, 2007 | Burnes et al. |
7181505 | February 20, 2007 | Haller et al. |
7184830 | February 27, 2007 | Echt et al. |
7186214 | March 6, 2007 | Ness |
7191015 | March 13, 2007 | Lamson et al. |
7200437 | April 3, 2007 | Nabutovsky et al. |
7200439 | April 3, 2007 | Zdeblick et al. |
7206423 | April 17, 2007 | Feng et al. |
7209785 | April 24, 2007 | Kim et al. |
7209790 | April 24, 2007 | Thompson et al. |
7211884 | May 1, 2007 | Davis et al. |
7212871 | May 1, 2007 | Morgan |
7226440 | June 5, 2007 | Gelfand et al. |
7228183 | June 5, 2007 | Sun et al. |
7231248 | June 12, 2007 | Kramer et al. |
7231253 | June 12, 2007 | Tidemand et al. |
7236821 | June 26, 2007 | Cates et al. |
7236829 | June 26, 2007 | Farazi et al. |
7254448 | August 7, 2007 | Almendinger et al. |
7260436 | August 21, 2007 | Kilgore et al. |
7270669 | September 18, 2007 | Sra |
7272448 | September 18, 2007 | Morgan et al. |
7277755 | October 2, 2007 | Falkenberg et al. |
7280872 | October 9, 2007 | Mosesov et al. |
7286866 | October 23, 2007 | Okerlund et al. |
7288096 | October 30, 2007 | Chin |
7289847 | October 30, 2007 | Gill et al. |
7289852 | October 30, 2007 | Helfinstine et al. |
7289853 | October 30, 2007 | Campbell et al. |
7289855 | October 30, 2007 | Nghiem et al. |
7302294 | November 27, 2007 | Kamath et al. |
7305266 | December 4, 2007 | Kroll |
7307321 | December 11, 2007 | Avanzino |
7308297 | December 11, 2007 | Reddy et al. |
7308299 | December 11, 2007 | Burrell et al. |
7310556 | December 18, 2007 | Bulkes |
7317950 | January 8, 2008 | Lee |
7319905 | January 15, 2008 | Morgan et al. |
7321677 | January 22, 2008 | Evron et al. |
7321798 | January 22, 2008 | Muhlenberg et al. |
7333853 | February 19, 2008 | Mazar et al. |
7336994 | February 26, 2008 | Hettrick et al. |
7346381 | March 18, 2008 | Okerlund et al. |
7346393 | March 18, 2008 | Spinelli et al. |
7347819 | March 25, 2008 | Lebel et al. |
7366572 | April 29, 2008 | Heruth et al. |
7373207 | May 13, 2008 | Lattouf |
7384403 | June 10, 2008 | Sherman |
7386342 | June 10, 2008 | Falkenberg et al. |
7392090 | June 24, 2008 | Sweeney et al. |
7406105 | July 29, 2008 | DelMain et al. |
7406349 | July 29, 2008 | Seeberger et al. |
7410497 | August 12, 2008 | Hastings et al. |
7425200 | September 16, 2008 | Brockway et al. |
7433739 | October 7, 2008 | Salys et al. |
7454248 | November 18, 2008 | Burrell et al. |
7496409 | February 24, 2009 | Greenhut et al. |
7496410 | February 24, 2009 | Heil |
7499743 | March 3, 2009 | Vass et al. |
7502652 | March 10, 2009 | Gaunt et al. |
7512448 | March 31, 2009 | Malick et al. |
7515969 | April 7, 2009 | Tockman et al. |
7526342 | April 28, 2009 | Chin et al. |
7529589 | May 5, 2009 | Williams et al. |
7532933 | May 12, 2009 | Hastings et al. |
7536222 | May 19, 2009 | Bardy et al. |
7536224 | May 19, 2009 | Ritscher et al. |
7539541 | May 26, 2009 | Quiles et al. |
7544197 | June 9, 2009 | Kelsch et al. |
7546166 | June 9, 2009 | Michels et al. |
7558626 | July 7, 2009 | Corbucci |
7558631 | July 7, 2009 | Cowan et al. |
7565190 | July 21, 2009 | Okerlund et al. |
7565195 | July 21, 2009 | Kroll et al. |
7584002 | September 1, 2009 | Burnes et al. |
7587074 | September 8, 2009 | Zarkh et al. |
7590455 | September 15, 2009 | Heruth et al. |
7599730 | October 6, 2009 | Hunter et al. |
7606621 | October 20, 2009 | Brisken et al. |
7610088 | October 27, 2009 | Chinchoy |
7610092 | October 27, 2009 | Cowan et al. |
7610099 | October 27, 2009 | Almendinger et al. |
7610104 | October 27, 2009 | Kaplan et al. |
7613500 | November 3, 2009 | Vass et al. |
7616991 | November 10, 2009 | Mann et al. |
7617001 | November 10, 2009 | Penner et al. |
7617007 | November 10, 2009 | Williams et al. |
7630764 | December 8, 2009 | Ding et al. |
7630767 | December 8, 2009 | Poore et al. |
7634313 | December 15, 2009 | Kroll et al. |
7635541 | December 22, 2009 | Scott et al. |
7637867 | December 29, 2009 | Zdeblick |
7640057 | December 29, 2009 | Libbus et al. |
7640060 | December 29, 2009 | Zdeblick |
7647109 | January 12, 2010 | Hastings et al. |
7650186 | January 19, 2010 | Hastings et al. |
7657311 | February 2, 2010 | Bardy et al. |
7657313 | February 2, 2010 | Rom |
7668596 | February 23, 2010 | Von Arx et al. |
7682316 | March 23, 2010 | Anderson et al. |
7691047 | April 6, 2010 | Ferrari |
7702392 | April 20, 2010 | Echt et al. |
7706879 | April 27, 2010 | Burnes et al. |
7713194 | May 11, 2010 | Zdeblick |
7713195 | May 11, 2010 | Zdeblick |
7729783 | June 1, 2010 | Michels et al. |
7734333 | June 8, 2010 | Ghanem et al. |
7734343 | June 8, 2010 | Ransbury et al. |
7738958 | June 15, 2010 | Zdeblick et al. |
7738964 | June 15, 2010 | Von Arx et al. |
7742629 | June 22, 2010 | Zarkh et al. |
7742812 | June 22, 2010 | Ghanem et al. |
7742816 | June 22, 2010 | Masoud et al. |
7742822 | June 22, 2010 | Masoud et al. |
7743151 | June 22, 2010 | Vallapureddy et al. |
7747047 | June 29, 2010 | Okerlund et al. |
7747335 | June 29, 2010 | Williams |
7751881 | July 6, 2010 | Cowan et al. |
7758521 | July 20, 2010 | Morris et al. |
7761150 | July 20, 2010 | Ghanem et al. |
7761164 | July 20, 2010 | Verhoef et al. |
7765001 | July 27, 2010 | Echt et al. |
7769452 | August 3, 2010 | Ghanem et al. |
7778685 | August 17, 2010 | Evron et al. |
7778686 | August 17, 2010 | Vass et al. |
7783362 | August 24, 2010 | Whitehurst et al. |
7792588 | September 7, 2010 | Harding |
7797059 | September 14, 2010 | Bornzin et al. |
7801596 | September 21, 2010 | Fischell et al. |
7809438 | October 5, 2010 | Echt et al. |
7813785 | October 12, 2010 | Okerlund et al. |
7840281 | November 23, 2010 | Kveen et al. |
7844331 | November 30, 2010 | Li et al. |
7844348 | November 30, 2010 | Swoyer et al. |
7846088 | December 7, 2010 | Ness |
7848815 | December 7, 2010 | Brisken et al. |
7848823 | December 7, 2010 | Drasler et al. |
7860455 | December 28, 2010 | Fukumoto et al. |
7871433 | January 18, 2011 | Lattouf |
7877136 | January 25, 2011 | Moffitt et al. |
7877142 | January 25, 2011 | Moaddeb et al. |
7877144 | January 25, 2011 | Coles, Jr. et al. |
7881786 | February 1, 2011 | Jackson |
7881791 | February 1, 2011 | Sambelashvili et al. |
7881798 | February 1, 2011 | Miesel et al. |
7881810 | February 1, 2011 | Chitre et al. |
7890173 | February 15, 2011 | Brisken et al. |
7890181 | February 15, 2011 | Denzene et al. |
7890192 | February 15, 2011 | Keisch et al. |
7894885 | February 22, 2011 | Baitai et al. |
7894894 | February 22, 2011 | Stadler et al. |
7894902 | February 22, 2011 | Rom |
7894907 | February 22, 2011 | Cowan et al. |
7894910 | February 22, 2011 | Cowan et al. |
7894915 | February 22, 2011 | Chitre et al. |
7899537 | March 1, 2011 | Kroll et al. |
7899541 | March 1, 2011 | Cowan et al. |
7899542 | March 1, 2011 | Cowan et al. |
7899554 | March 1, 2011 | Williams et al. |
7901360 | March 8, 2011 | Yang et al. |
7904170 | March 8, 2011 | Harding |
7907993 | March 15, 2011 | Ghanem et al. |
7912544 | March 22, 2011 | Min et al. |
7920928 | April 5, 2011 | Yang et al. |
7925343 | April 12, 2011 | Min et al. |
7930022 | April 19, 2011 | Zhang et al. |
7930027 | April 19, 2011 | Prakash et al. |
7930040 | April 19, 2011 | Kelsch et al. |
7937135 | May 3, 2011 | Ghanem et al. |
7937148 | May 3, 2011 | Jacobson |
7937161 | May 3, 2011 | Hastings et al. |
7941214 | May 10, 2011 | Kleckner et al. |
7941218 | May 10, 2011 | Sambelashvili et al. |
7945333 | May 17, 2011 | Jacobson |
7946997 | May 24, 2011 | Hubinette |
7949404 | May 24, 2011 | Hill |
7949405 | May 24, 2011 | Feher |
7953486 | May 31, 2011 | Daum et al. |
7953493 | May 31, 2011 | Fowler et al. |
7962202 | June 14, 2011 | Bhunia |
7974702 | July 5, 2011 | Fain et al. |
7979136 | July 12, 2011 | Young et al. |
7983753 | July 19, 2011 | Severin |
7991467 | August 2, 2011 | Markowitz et al. |
7991471 | August 2, 2011 | Ghanem et al. |
7996063 | August 9, 2011 | Vass et al. |
7996087 | August 9, 2011 | Cowan et al. |
8000791 | August 16, 2011 | Sunagawa et al. |
8000807 | August 16, 2011 | Morris et al. |
8001975 | August 23, 2011 | DiSilvestro et al. |
8002700 | August 23, 2011 | Ferek-Petric et al. |
8002718 | August 23, 2011 | Buchholtz et al. |
8010191 | August 30, 2011 | Zhu et al. |
8010209 | August 30, 2011 | Jacobson |
8014861 | September 6, 2011 | Zhu et al. |
8019419 | September 13, 2011 | Panescu et al. |
8019434 | September 13, 2011 | Quiles et al. |
8027727 | September 27, 2011 | Freeberg |
8027729 | September 27, 2011 | Sunagawa et al. |
8032219 | October 4, 2011 | Neumann et al. |
8036743 | October 11, 2011 | Savage et al. |
8046065 | October 25, 2011 | Burnes et al. |
8046079 | October 25, 2011 | Bange et al. |
8046080 | October 25, 2011 | Von Arx et al. |
8050297 | November 1, 2011 | Delmain et al. |
8050759 | November 1, 2011 | Stegemann et al. |
8050774 | November 1, 2011 | Kveen et al. |
8055345 | November 8, 2011 | Li et al. |
8055350 | November 8, 2011 | Roberts |
8060185 | November 15, 2011 | Hunter et al. |
8060212 | November 15, 2011 | Rios et al. |
8065018 | November 22, 2011 | Haubrich et al. |
8068920 | November 29, 2011 | Gaudiani |
8073542 | December 6, 2011 | Doerr |
8078278 | December 13, 2011 | Penner |
8078283 | December 13, 2011 | Cowan et al. |
8095123 | January 10, 2012 | Gray |
8102789 | January 24, 2012 | Rosar et al. |
8103359 | January 24, 2012 | Reddy |
8103361 | January 24, 2012 | Moser |
8105714 | January 31, 2012 | Schmidt et al. |
8112148 | February 7, 2012 | Giftakis et al. |
8114021 | February 14, 2012 | Robertson et al. |
8121680 | February 21, 2012 | Falkenberg et al. |
8123684 | February 28, 2012 | Zdeblick |
8126545 | February 28, 2012 | Flach et al. |
8131334 | March 6, 2012 | Lu et al. |
8140161 | March 20, 2012 | Willerton et al. |
8145308 | March 27, 2012 | Sambelashvili et al. |
8150521 | April 3, 2012 | Crowley et al. |
8160672 | April 17, 2012 | Kim et al. |
8160702 | April 17, 2012 | Mann et al. |
8160704 | April 17, 2012 | Freeberg |
8165694 | April 24, 2012 | Carbanaru et al. |
8175715 | May 8, 2012 | Cox |
8180428 | May 15, 2012 | Kaiser et al. |
8180451 | May 15, 2012 | Hickman et al. |
8185213 | May 22, 2012 | Kveen et al. |
8187161 | May 29, 2012 | Li et al. |
8195293 | June 5, 2012 | Limousin et al. |
8204590 | June 19, 2012 | Sambelashvili et al. |
8204595 | June 19, 2012 | Pianca et al. |
8204605 | June 19, 2012 | Hastings et al. |
8209014 | June 26, 2012 | Doerr |
8214041 | July 3, 2012 | Van Gelder et al. |
8214043 | July 3, 2012 | Matos |
8224244 | July 17, 2012 | Kim et al. |
8229556 | July 24, 2012 | Li |
8233985 | July 31, 2012 | Bulkes et al. |
8265748 | September 11, 2012 | Liu et al. |
8265757 | September 11, 2012 | Mass et al. |
8262578 | September 11, 2012 | Bharmi et al. |
8280521 | October 2, 2012 | Haubrich et al. |
8285387 | October 9, 2012 | Utsi et al. |
8290598 | October 16, 2012 | Boon et al. |
8290600 | October 16, 2012 | Hastings et al. |
8295939 | October 23, 2012 | Jacobson |
8301254 | October 30, 2012 | Mosesov et al. |
8315701 | November 20, 2012 | Cowan et al. |
8315708 | November 20, 2012 | Berthelsdorf et al. |
8321014 | November 27, 2012 | Maskara et al. |
8321021 | November 27, 2012 | Kisker et al. |
8321036 | November 27, 2012 | Brockway et al. |
8332036 | December 11, 2012 | Hastings et al. |
8335563 | December 18, 2012 | Stessman |
8335568 | December 18, 2012 | Heruth et al. |
8340750 | December 25, 2012 | Prakash et al. |
8340780 | December 25, 2012 | Hastings et al. |
8352025 | January 8, 2013 | Jacobson |
8352027 | January 8, 2013 | Spinelli et al. |
8352028 | January 8, 2013 | Wenger |
8352038 | January 8, 2013 | Mao et al. |
8359098 | January 22, 2013 | Lund et al. |
8364261 | January 29, 2013 | Stubbs et al. |
8364276 | January 29, 2013 | Willis |
8369959 | February 5, 2013 | Meskens |
8369962 | February 5, 2013 | Abrahamson |
8380320 | February 19, 2013 | Spital |
8383269 | February 26, 2013 | Scott et al. |
8386051 | February 26, 2013 | Rys |
8391964 | March 5, 2013 | Musley et al. |
8391981 | March 5, 2013 | Mosesov |
8391990 | March 5, 2013 | Smith et al. |
8401616 | March 19, 2013 | Verard et al. |
8406874 | March 26, 2013 | Liu et al. |
8406879 | March 26, 2013 | Shuros et al. |
8406886 | March 26, 2013 | Gaunt et al. |
8406899 | March 26, 2013 | Reddy et al. |
8412352 | April 2, 2013 | Griswold et al. |
8417340 | April 9, 2013 | Goossen |
8417341 | April 9, 2013 | Freeberg |
8423149 | April 16, 2013 | Hennig |
8428716 | April 23, 2013 | Mullen et al. |
8428722 | April 23, 2013 | Verhoef et al. |
8433402 | April 30, 2013 | Ruben et al. |
8433409 | April 30, 2013 | Johnson et al. |
8433420 | April 30, 2013 | Bange et al. |
8447412 | May 21, 2013 | Dal Molin et al. |
8452413 | May 28, 2013 | Young et al. |
8457740 | June 4, 2013 | Osche |
8457742 | June 4, 2013 | Jacobson |
8457744 | June 4, 2013 | Janzig et al. |
8457761 | June 4, 2013 | Wariar |
8467871 | June 18, 2013 | Maskara |
8478407 | July 2, 2013 | Demmer et al. |
8478408 | July 2, 2013 | Hastings et al. |
8478431 | July 2, 2013 | Griswold et al. |
8494632 | July 23, 2013 | Sun et al. |
8504156 | August 6, 2013 | Bonner et al. |
8509910 | August 13, 2013 | Sowder et al. |
8509916 | August 13, 2013 | Byrd et al. |
8515559 | August 20, 2013 | Roberts et al. |
8521268 | August 27, 2013 | Zhang et al. |
8525340 | September 3, 2013 | Eckhardt et al. |
8527068 | September 3, 2013 | Ostroff |
8532790 | September 10, 2013 | Griswold |
8538526 | September 17, 2013 | Stahmann et al. |
8541131 | September 24, 2013 | Lund et al. |
8543205 | September 24, 2013 | Ostroff |
8547248 | October 1, 2013 | Zdeblick et al. |
8548605 | October 1, 2013 | Ollivier |
8554333 | October 8, 2013 | Wu et al. |
8565882 | October 22, 2013 | Matoes |
8565897 | October 22, 2013 | Regnier et al. |
8571678 | October 29, 2013 | Wang |
8577327 | November 5, 2013 | Makdissi et al. |
8588926 | November 19, 2013 | Moore et al. |
8594775 | November 26, 2013 | Ghosh et al. |
8612002 | December 17, 2013 | Faltys et al. |
8615310 | December 24, 2013 | Khairkhahan et al. |
8617082 | December 31, 2013 | Zhang et al. |
8626280 | January 7, 2014 | Allavatam et al. |
8626294 | January 7, 2014 | Sheldon et al. |
8634908 | January 21, 2014 | Cowan |
8634912 | January 21, 2014 | Bornzin et al. |
8634919 | January 21, 2014 | Hou et al. |
8639333 | January 28, 2014 | Stadler et al. |
8639335 | January 28, 2014 | Peichel et al. |
8644934 | February 4, 2014 | Hastings et al. |
8649859 | February 11, 2014 | Smith et al. |
8670842 | March 11, 2014 | Bornzin et al. |
8676314 | March 18, 2014 | Maskara et al. |
8676319 | March 18, 2014 | Knoll |
8676335 | March 18, 2014 | Katoozi et al. |
8700173 | April 15, 2014 | Edlund |
8700181 | April 15, 2014 | Bornzin et al. |
8705599 | April 22, 2014 | Dal Molin et al. |
8718766 | May 6, 2014 | Wahlberg |
8718773 | May 6, 2014 | Willis et al. |
8725260 | May 13, 2014 | Shuros et al. |
8731642 | May 20, 2014 | Zarkh et al. |
8738133 | May 27, 2014 | Shuros et al. |
8738147 | May 27, 2014 | Hastings et al. |
8744555 | June 3, 2014 | Allavatam et al. |
8744572 | June 3, 2014 | Greenhut et al. |
8747314 | June 10, 2014 | Stahmann et al. |
8750994 | June 10, 2014 | Ghosh et al. |
8750998 | June 10, 2014 | Ghosh et al. |
8755884 | June 17, 2014 | Demmer et al. |
8758365 | June 24, 2014 | Bonner et al. |
8768459 | July 1, 2014 | Ghosh et al. |
8768483 | July 1, 2014 | Schmitt et al. |
8774572 | July 8, 2014 | Hamamoto |
8781605 | July 15, 2014 | Bornzin et al. |
8788035 | July 22, 2014 | Jacobson |
8788053 | July 22, 2014 | Jacobson |
8798740 | August 5, 2014 | Samade et al. |
8798745 | August 5, 2014 | Jacobson |
8798762 | August 5, 2014 | Fain et al. |
8798770 | August 5, 2014 | Reddy |
8805505 | August 12, 2014 | Roberts |
8805528 | August 12, 2014 | Comdorf |
8812109 | August 19, 2014 | Blomqvist et al. |
8818504 | August 26, 2014 | Bodner et al. |
8827913 | September 9, 2014 | Havel et al. |
8831747 | September 9, 2014 | Min et al. |
8855789 | October 7, 2014 | Jacobson |
8861830 | October 14, 2014 | Brada et al. |
8868186 | October 21, 2014 | Kroll |
8886307 | November 11, 2014 | Sambelashvili et al. |
8886311 | November 11, 2014 | Anderson et al. |
8886339 | November 11, 2014 | Faltys et al. |
8903473 | December 2, 2014 | Rogers et al. |
8903513 | December 2, 2014 | Ollivier |
8909336 | December 9, 2014 | Navarro-Paredes et al. |
8914131 | December 16, 2014 | Bornzin et al. |
8923795 | December 30, 2014 | Makdissi et al. |
8923963 | December 30, 2014 | Bonner et al. |
8938300 | January 20, 2015 | Rosero |
8942806 | January 27, 2015 | Sheldon et al. |
8948883 | February 3, 2015 | Eggen et al. |
8958892 | February 17, 2015 | Khairkhahan et al. |
8977358 | March 10, 2015 | Ewert et al. |
8989873 | March 24, 2015 | Locsin |
8996109 | March 31, 2015 | Karst et al. |
9002467 | April 7, 2015 | Smith et al. |
9008776 | April 14, 2015 | Cowan et al. |
9008777 | April 14, 2015 | Dianaty et al. |
9014818 | April 21, 2015 | Deterre et al. |
9017341 | April 28, 2015 | Bornzin et al. |
9020611 | April 28, 2015 | Khairkhahan et al. |
9033996 | May 19, 2015 | West |
9037262 | May 19, 2015 | Regnier et al. |
9042984 | May 26, 2015 | Demmer et al. |
9072872 | July 7, 2015 | Asleson et al. |
9072911 | July 7, 2015 | Hastings et al. |
9072913 | July 7, 2015 | Jacobson |
9101281 | August 11, 2015 | Reinert et al. |
9119959 | September 1, 2015 | Rys et al. |
9155882 | October 13, 2015 | Grubac et al. |
9168372 | October 27, 2015 | Fain |
9168380 | October 27, 2015 | Greenhut et al. |
9168383 | October 27, 2015 | Jacobson et al. |
9180285 | November 10, 2015 | Moore et al. |
9192774 | November 24, 2015 | Jacobson |
9205225 | December 8, 2015 | Khairkhahan et al. |
9216285 | December 22, 2015 | Boling et al. |
9216293 | December 22, 2015 | Berthiaume et al. |
9216298 | December 22, 2015 | Jacobson |
9227077 | January 5, 2016 | Jacobson |
9238145 | January 19, 2016 | Wenzel et al. |
9242102 | January 26, 2016 | Khairkhahan et al. |
9242113 | January 26, 2016 | Smith et al. |
9248300 | February 2, 2016 | Rys et al. |
9265436 | February 23, 2016 | Min et al. |
9265962 | February 23, 2016 | Dianaty et al. |
9272155 | March 1, 2016 | Ostroff |
9278218 | March 8, 2016 | Karst et al. |
9278229 | March 8, 2016 | Reinke et al. |
9283381 | March 15, 2016 | Grubac et al. |
9283382 | March 15, 2016 | Berthiaume et al. |
9289612 | March 22, 2016 | Sambelashbili et al. |
9302115 | April 5, 2016 | Molin et al. |
9320446 | April 26, 2016 | Gillberg et al. |
9333364 | May 10, 2016 | Echt et al. |
9358387 | June 7, 2016 | Suwito et al. |
9358400 | June 7, 2016 | Jacobson |
9364675 | June 14, 2016 | Deterre et al. |
9370663 | June 21, 2016 | Moulder |
9375580 | June 28, 2016 | Bonner et al. |
9375581 | June 28, 2016 | Baru et al. |
9381365 | July 5, 2016 | Kibler et al. |
9393424 | July 19, 2016 | Demmer et al. |
9393436 | July 19, 2016 | Doerr |
9399139 | July 26, 2016 | Demmer et al. |
9399140 | July 26, 2016 | Cho et al. |
9409033 | August 9, 2016 | Jacobson |
9427594 | August 30, 2016 | Bornzin et al. |
9433368 | September 6, 2016 | Stahmann et al. |
9433780 | September 6, 2016 | Regnier et al. |
9457193 | October 4, 2016 | Klimovitch et al. |
9474457 | October 25, 2016 | Ghosh et al. |
9486151 | November 8, 2016 | Ghosh et al. |
9492668 | November 15, 2016 | Sheldon et al. |
9492669 | November 15, 2016 | Demmer et al. |
9492674 | November 15, 2016 | Schmidt et al. |
9492677 | November 15, 2016 | Greenhut et al. |
9511233 | December 6, 2016 | Sambelashvili |
9511236 | December 6, 2016 | Varady et al. |
9511237 | December 6, 2016 | Deterre et al. |
9517336 | December 13, 2016 | Eggen et al. |
9522276 | December 20, 2016 | Shen et al. |
9522280 | December 20, 2016 | Fishier et al. |
9526522 | December 27, 2016 | Wood et al. |
9526891 | December 27, 2016 | Eggen et al. |
9526909 | December 27, 2016 | Stahmann et al. |
9533163 | January 3, 2017 | Klimovitch et al. |
9561382 | February 7, 2017 | Persson et al. |
9566012 | February 14, 2017 | Greenhut et al. |
9579500 | February 28, 2017 | Rys et al. |
9623234 | April 18, 2017 | Anderson |
9636511 | May 2, 2017 | Carney et al. |
9643014 | May 9, 2017 | Zhang et al. |
9675579 | June 13, 2017 | Rock et al. |
9707399 | July 18, 2017 | Zielinski et al. |
9724519 | August 8, 2017 | Demmer et al. |
9789319 | October 17, 2017 | Sambelashvili |
9808628 | November 7, 2017 | Sheldon et al. |
9808633 | November 7, 2017 | Bonner et al. |
9877789 | January 30, 2018 | Ghosh |
9924884 | March 27, 2018 | Ghosh et al. |
10004467 | June 26, 2018 | Lahm et al. |
10064567 | September 4, 2018 | Ghosh et al. |
10099050 | October 16, 2018 | Chen et al. |
10166396 | January 1, 2019 | Schrock et al. |
10251555 | April 9, 2019 | Ghosh et al. |
10850107 | December 1, 2020 | Li et al. |
10850108 | December 1, 2020 | Li et al. |
20020032470 | March 14, 2002 | Linberg |
20020035376 | March 21, 2002 | Bardy et al. |
20020035377 | March 21, 2002 | Bardy et al. |
20020035378 | March 21, 2002 | Bardy et al. |
20020035380 | March 21, 2002 | Rissmann et al. |
20020035381 | March 21, 2002 | Bardy et al. |
20020004263 | January 10, 2002 | Bardy et al. |
20020042629 | April 11, 2002 | Bardy et al. |
20020042634 | April 11, 2002 | Bardy et al. |
20020049475 | April 25, 2002 | Bardy et al. |
20020049476 | April 25, 2002 | Bardy et al. |
20020052636 | May 2, 2002 | Bardy et al. |
20020068958 | June 6, 2002 | Bardy et al. |
20020072773 | June 13, 2002 | Bardy et al. |
20020082665 | June 27, 2002 | Haller et al. |
20020091414 | July 11, 2002 | Bardy et al. |
20020095196 | July 18, 2002 | Linberg |
20020099423 | July 25, 2002 | Berg et al. |
20020103510 | August 1, 2002 | Bardy et al. |
20020107545 | August 8, 2002 | Rissmann et al. |
20020107546 | August 8, 2002 | Ostroff et al. |
20020107547 | August 8, 2002 | Erlinger et al. |
20020107548 | August 8, 2002 | Bardy et al. |
20020107549 | August 8, 2002 | Bardy et al. |
20020107559 | August 8, 2002 | Sanders et al. |
20020120299 | August 29, 2002 | Ostroff et al. |
20020173830 | November 21, 2002 | Starkweather et al. |
20020193846 | December 19, 2002 | Pool et al. |
20030004549 | January 2, 2003 | Hill et al. |
20030009203 | January 9, 2003 | Lebel et al. |
20030028082 | February 6, 2003 | Thompson |
20030040779 | February 27, 2003 | Engmark et al. |
20030041866 | March 6, 2003 | Linberg et al. |
20030045805 | March 6, 2003 | Sheldon et al. |
20030088278 | May 8, 2003 | Bardy et al. |
20030092995 | May 15, 2003 | Thompson |
20030097153 | May 22, 2003 | Bardy et al. |
20030105497 | June 5, 2003 | Zhu et al. |
20030114908 | June 19, 2003 | Flach |
20030144701 | July 31, 2003 | Mehra et al. |
20030187460 | October 2, 2003 | Chin et al. |
20030187461 | October 2, 2003 | Chin |
20040002443 | January 1, 2004 | Leckrone et al. |
20040064158 | April 1, 2004 | Klein et al. |
20040068302 | April 8, 2004 | Rodgers et al. |
20040008793 | January 15, 2004 | Leckrone et al. |
20040088035 | May 6, 2004 | Guenst et al. |
20040102830 | May 27, 2004 | Williams |
20040127959 | July 1, 2004 | Amundson et al. |
20040133242 | July 8, 2004 | Chapman et al. |
20040147969 | July 29, 2004 | Mann et al. |
20040147973 | July 29, 2004 | Hauser |
20040167558 | August 26, 2004 | Igo et al. |
20040167587 | August 26, 2004 | Thompson |
20040172071 | September 2, 2004 | Bardy et al. |
20040172077 | September 2, 2004 | Chinchoy |
20040172104 | September 2, 2004 | Berg et al. |
20040176817 | September 9, 2004 | Strand et al. |
20040176818 | September 9, 2004 | Strand et al. |
20040176830 | September 9, 2004 | Fang |
20040186529 | September 23, 2004 | Bardy et al. |
20040204673 | October 14, 2004 | Flaherty |
20040210292 | October 21, 2004 | Bardy et al. |
20040210293 | October 21, 2004 | Bardy et al. |
20040210294 | October 21, 2004 | Bardy et al. |
20040215308 | October 28, 2004 | Bardy et al. |
20040022063 | February 5, 2004 | Mulligan et al. |
20040220624 | November 4, 2004 | Ritscher et al. |
20040220626 | November 4, 2004 | Wagner |
20040002673 | January 1, 2004 | Guenst |
20040230283 | November 18, 2004 | Prinzen et al. |
20040249431 | December 9, 2004 | Ransbury et al. |
20040260348 | December 23, 2004 | Bakken et al. |
20050008210 | January 13, 2005 | Evron et al. |
20050038477 | February 17, 2005 | Kramer et al. |
20050061320 | March 24, 2005 | Lee et al. |
20050070962 | March 31, 2005 | Echt et al. |
20050102003 | May 12, 2005 | Grabek et al. |
20050137629 | June 23, 2005 | Dyjach et al. |
20050137671 | June 23, 2005 | Liu et al. |
20050014913 | January 20, 2005 | Min et al. |
20050165466 | July 28, 2005 | Morris et al. |
20050182465 | August 18, 2005 | Ness |
20050203410 | September 15, 2005 | Jenkins |
20050277990 | December 15, 2005 | Ostroff et al. |
20050283208 | December 22, 2005 | Von Arx et al. |
20050288743 | December 29, 2005 | Ahn et al. |
20060006413 | January 12, 2006 | Brockway |
20060042830 | March 2, 2006 | Maghribi et al. |
20060052829 | March 9, 2006 | Sun et al. |
20060052830 | March 9, 2006 | Spinelli et al. |
20060064149 | March 23, 2006 | Belacazar et al. |
20060074285 | April 6, 2006 | Zarkh et al. |
20060085039 | April 20, 2006 | Hastings et al. |
20060085041 | April 20, 2006 | Hastings et al. |
20060085042 | April 20, 2006 | Hastings et al. |
20060095078 | May 4, 2006 | Tronnes |
20060106442 | May 18, 2006 | Richardson et al. |
20060116746 | June 1, 2006 | Chin |
20060135999 | June 22, 2006 | Bodner et al. |
20060136004 | June 22, 2006 | Cowan et al. |
20060161061 | July 20, 2006 | Echt et al. |
20060161205 | July 20, 2006 | Mitrani et al. |
20060200002 | September 7, 2006 | Guenst |
20060206151 | September 14, 2006 | Lu |
20060212079 | September 21, 2006 | Routh et al. |
20060235478 | October 19, 2006 | Van Gelder et al. |
20060241701 | October 26, 2006 | Markowitz et al. |
20060241705 | October 26, 2006 | Neumann et al. |
20060247672 | November 2, 2006 | Vidlund et al. |
20060259088 | November 16, 2006 | Pastore et al. |
20060265018 | November 23, 2006 | Smith et al. |
20070004979 | January 4, 2007 | Wojciechowicz et al. |
20070016098 | January 18, 2007 | Kim et al. |
20070027508 | February 1, 2007 | Cowan |
20070049975 | March 1, 2007 | Cates et al. |
20070078490 | April 5, 2007 | Cowan et al. |
20070088394 | April 19, 2007 | Jacobson |
20070088396 | April 19, 2007 | Jacobson |
20070088397 | April 19, 2007 | Jacobson |
20070088398 | April 19, 2007 | Jacobson |
20070088405 | April 19, 2007 | Jaconson |
20070135882 | June 14, 2007 | Drasler et al. |
20070135883 | June 14, 2007 | Drasler et al. |
20070150037 | June 28, 2007 | Hastings et al. |
20070150038 | June 28, 2007 | Hastings et al. |
20070156190 | July 5, 2007 | Cinbis |
20070219525 | September 20, 2007 | Gelfand et al. |
20070219590 | September 20, 2007 | Hastings et al. |
20070225545 | September 27, 2007 | Ferrari |
20070233206 | October 4, 2007 | Frikart et al. |
20070233216 | October 4, 2007 | Liu et al. |
20070239244 | October 11, 2007 | Morgan et al. |
20070255376 | November 1, 2007 | Michels et al. |
20070276444 | November 29, 2007 | Gelbart et al. |
20070293900 | December 20, 2007 | Sheldon et al. |
20070293904 | December 20, 2007 | Gelbart et al. |
20070299475 | December 27, 2007 | Levin et al. |
20080004663 | January 3, 2008 | Jorgenson |
20080021505 | January 24, 2008 | Hastings et al. |
20080021519 | January 24, 2008 | De Geest et al. |
20080021532 | January 24, 2008 | Kveen et al. |
20080065183 | March 13, 2008 | Whitehurst et al. |
20080065185 | March 13, 2008 | Worley |
20080071318 | March 20, 2008 | Brooke et al. |
20080082136 | April 3, 2008 | Gaudiani |
20080109054 | May 8, 2008 | Hastings et al. |
20080119911 | May 22, 2008 | Rosero |
20080130670 | June 5, 2008 | Kim et al. |
20080154139 | June 26, 2008 | Shuros et al. |
20080154322 | June 26, 2008 | Jackson et al. |
20080228234 | September 18, 2008 | Stancer |
20080234771 | September 25, 2008 | Chinchoy et al. |
20080243217 | October 2, 2008 | Wildon |
20080269814 | October 30, 2008 | Rosero |
20080269816 | October 30, 2008 | Prakash et al. |
20080269823 | October 30, 2008 | Burnes et al. |
20080269825 | October 30, 2008 | Chinchoy et al. |
20080275518 | November 6, 2008 | Ghanem et al. |
20080275519 | November 6, 2008 | Ghanem et al. |
20080288039 | November 20, 2008 | Reddy |
20080294208 | November 27, 2008 | Willis et al. |
20080294210 | November 27, 2008 | Rosero |
20080294229 | November 27, 2008 | Friedman et al. |
20080306359 | December 11, 2008 | Zdeblick et al. |
20090018599 | January 15, 2009 | Hastings et al. |
20090024180 | January 22, 2009 | Kisker et al. |
20090036941 | February 5, 2009 | Corbucci |
20090048646 | February 19, 2009 | Katoozi et al. |
20090062895 | March 5, 2009 | Stahmann et al. |
20090082827 | March 26, 2009 | Kveen et al. |
20090082828 | March 26, 2009 | Ostroff |
20090088813 | April 2, 2009 | Brockway et al. |
20090099619 | April 16, 2009 | Lessmeier et al. |
20090131907 | May 21, 2009 | Chin et al. |
20090135886 | May 28, 2009 | Robertson et al. |
20090143835 | June 4, 2009 | Pastore et al. |
20090171408 | July 2, 2009 | Solem |
20090171414 | July 2, 2009 | Kelly et al. |
20090204163 | August 13, 2009 | Shuros et al. |
20090204170 | August 13, 2009 | Hastings et al. |
20090210024 | August 20, 2009 | Jason |
20090216292 | August 27, 2009 | Pless et al. |
20090234407 | September 17, 2009 | Hastings et al. |
20090234411 | September 17, 2009 | Sambelashvili et al. |
20090234412 | September 17, 2009 | Sambelashvili |
20090234413 | September 17, 2009 | Sambelashvili et al. |
20090234414 | September 17, 2009 | Sambelashvili et al. |
20090234415 | September 17, 2009 | Sambelashvili et al. |
20090248103 | October 1, 2009 | Sambelashvili et al. |
20090266573 | October 29, 2009 | Engmark et al. |
20090275998 | November 5, 2009 | Burnes et al. |
20090275999 | November 5, 2009 | Burnes et al. |
20090299447 | December 3, 2009 | Jensen et al. |
20100013668 | January 21, 2010 | Kantervik |
20100016911 | January 21, 2010 | Willis et al. |
20100016914 | January 21, 2010 | Mullen et al. |
20100023078 | January 28, 2010 | Dong et al. |
20100023085 | January 28, 2010 | Wu et al. |
20100030061 | February 4, 2010 | Canfield et al. |
20100030327 | February 4, 2010 | Chatel |
20100042108 | February 18, 2010 | Hibino |
20100063375 | March 11, 2010 | Kassab et al. |
20100063562 | March 11, 2010 | Cowan et al. |
20100065871 | March 18, 2010 | Govari et al. |
20100094250 | April 15, 2010 | Gumm |
20100094367 | April 15, 2010 | Sen |
20100114209 | May 6, 2010 | Krause et al. |
20100114214 | May 6, 2010 | Morelli et al. |
20100125281 | May 20, 2010 | Jacobson et al. |
20100152798 | June 17, 2010 | Sanghera et al. |
20100168761 | July 1, 2010 | Kassab et al. |
20100168819 | July 1, 2010 | Freeberg |
20100185250 | July 22, 2010 | Rom |
20100002173 | January 7, 2010 | Belson |
20100198288 | August 5, 2010 | Ostroff |
20100198291 | August 5, 2010 | Sambelashvili et al. |
20100198304 | August 5, 2010 | Wang |
20100218147 | August 26, 2010 | Ishikawa |
20100228308 | September 9, 2010 | Cowan et al. |
20100234906 | September 16, 2010 | Koh |
20100234924 | September 16, 2010 | Willis |
20100241185 | September 23, 2010 | Mahapatra et al. |
20100249729 | September 30, 2010 | Morris et al. |
20100286541 | November 11, 2010 | Musley et al. |
20100286626 | November 11, 2010 | Petersen |
20100286744 | November 11, 2010 | Echt et al. |
20100298841 | November 25, 2010 | Prinzen et al. |
20100003123 | January 7, 2010 | Harding |
20110022113 | January 27, 2011 | Ideblick et al. |
20110071586 | March 24, 2011 | Jacobson |
20110077708 | March 31, 2011 | Ostroff |
20110106202 | May 5, 2011 | Ding et al. |
20110112398 | May 12, 2011 | Zarkh et al. |
20110112600 | May 12, 2011 | Cowan et al. |
20110118588 | May 19, 2011 | Komblau et al. |
20110118810 | May 19, 2011 | Cowan et al. |
20110137187 | June 9, 2011 | Yang et al. |
20110144720 | June 16, 2011 | Cowan et al. |
20110152970 | June 23, 2011 | Jollota et al. |
20110160558 | June 30, 2011 | Rassatt et al. |
20110160565 | June 30, 2011 | Stubbs |
20110160801 | June 30, 2011 | Markowitz et al. |
20110160806 | June 30, 2011 | Lyden et al. |
20110166620 | July 7, 2011 | Cowan et al. |
20110166621 | July 7, 2011 | Cowan et al. |
20110184491 | July 28, 2011 | Kivi |
20110019083 | January 27, 2011 | Brockway et al. |
20110190841 | August 4, 2011 | Sambelashvili et al. |
20110196444 | August 11, 2011 | Prakash et al. |
20110208260 | August 25, 2011 | Jacobson |
20110218587 | September 8, 2011 | Jacobson |
20110230734 | September 22, 2011 | Fain et al. |
20110237967 | September 29, 2011 | Moore et al. |
20110245890 | October 6, 2011 | Brisben et al. |
20110251660 | October 13, 2011 | Griswold |
20110251662 | October 13, 2011 | Griswold et al. |
20110002703 | January 6, 2011 | Murray et al. |
20110270099 | November 3, 2011 | Ruben et al. |
20110270340 | November 3, 2011 | Pellegrini et al. |
20110276102 | November 10, 2011 | Cohen |
20110282423 | November 17, 2011 | Jacobson |
20120004527 | January 5, 2012 | Thompson et al. |
20120029323 | February 2, 2012 | Zhao |
20120035685 | February 9, 2012 | Saha et al. |
20120041508 | February 16, 2012 | Rousso et al. |
20120059433 | March 8, 2012 | Cowan et al. |
20120059436 | March 8, 2012 | Fontaine et al. |
20120065500 | March 15, 2012 | Rogers et al. |
20120078322 | March 29, 2012 | Molin et al. |
20120089198 | April 12, 2012 | Ostroff |
20120089214 | April 12, 2012 | Kroll et al. |
20120093245 | April 19, 2012 | Makdissi et al. |
20120095521 | April 19, 2012 | Hintz |
20120095539 | April 19, 2012 | Khairkhahan et al. |
20120101540 | April 26, 2012 | O'Brien et al. |
20120101553 | April 26, 2012 | Reddy |
20120010923 | January 12, 2012 | Sheldon et al. |
20120109148 | May 3, 2012 | Bonner et al. |
20120109149 | May 3, 2012 | Bonner et al. |
20120109259 | May 3, 2012 | Bond et al. |
20120116489 | May 10, 2012 | Khairkhahan et al. |
20120150251 | June 14, 2012 | Giftakis et al. |
20120158111 | June 21, 2012 | Khairkhahan et al. |
20120165827 | June 28, 2012 | Khairkhahan et al. |
20120172690 | July 5, 2012 | Anderson et al. |
20120172891 | July 5, 2012 | Lee |
20120172892 | July 5, 2012 | Grubac et al. |
20120172942 | July 5, 2012 | Berg |
20120001973 | January 5, 2012 | Khairkhahan et al. |
20120197350 | August 2, 2012 | Roberts et al. |
20120215285 | August 23, 2012 | Tahmasian et al. |
20120232478 | September 13, 2012 | Haslinger |
20120232563 | September 13, 2012 | Williams et al. |
20120232565 | September 13, 2012 | Kveen et al. |
20120245665 | September 27, 2012 | Friedman et al. |
20120263218 | October 18, 2012 | Dal Molin et al. |
20120002963 | January 5, 2012 | Matos |
20120277600 | November 1, 2012 | Greenhut |
20120277606 | November 1, 2012 | Ellingson et al. |
20120277725 | November 1, 2012 | Kassab |
20120283587 | November 8, 2012 | Gosh et al. |
20120283795 | November 8, 2012 | Stancer et al. |
20120283807 | November 8, 2012 | Deterre et al. |
20120284003 | November 8, 2012 | Gosh et al. |
20120290025 | November 15, 2012 | Keimel |
20120296228 | November 22, 2012 | Zhang et al. |
20120303082 | November 29, 2012 | Dong et al. |
20120316613 | December 13, 2012 | Keefe et al. |
20130012151 | January 10, 2013 | Hankins |
20130013017 | January 10, 2013 | Mullen et al. |
20130023975 | January 24, 2013 | Locsin |
20130035748 | February 7, 2013 | Bonner et al. |
20130041422 | February 14, 2013 | Jacobson |
20130053906 | February 28, 2013 | Ghosh et al. |
20130053908 | February 28, 2013 | Smith et al. |
20130053915 | February 28, 2013 | Holmstrom et al. |
20130053921 | February 28, 2013 | Bonner et al. |
20130060298 | March 7, 2013 | Splett et al. |
20130066169 | March 14, 2013 | Rys et al. |
20130072770 | March 21, 2013 | Rao et al. |
20130079798 | March 28, 2013 | Tran et al. |
20130079861 | March 28, 2013 | Reinert et al. |
20130085350 | April 4, 2013 | Schugt et al. |
20130085403 | April 4, 2013 | Gunderson et al. |
20130085550 | April 4, 2013 | Polefko et al. |
20130096649 | April 18, 2013 | Martin et al. |
20130103047 | April 25, 2013 | Steingisser et al. |
20130103109 | April 25, 2013 | Jacobson |
20130110008 | May 2, 2013 | Bourg et al. |
20130110127 | May 2, 2013 | Bornzin et al. |
20130110192 | May 2, 2013 | Tran et al. |
20130110219 | May 2, 2013 | Bornzin et al. |
20130116529 | May 9, 2013 | Min et al. |
20130116738 | May 9, 2013 | Samade et al. |
20130116739 | May 9, 2013 | Brada et al. |
20130116740 | May 9, 2013 | Bornzin et al. |
20130116741 | May 9, 2013 | Bornzin et al. |
20130123872 | May 16, 2013 | Bornzin et al. |
20130123875 | May 16, 2013 | Varady et al. |
20130131591 | May 23, 2013 | Berthiaume et al. |
20130131693 | May 23, 2013 | Berthiaume et al. |
20130131750 | May 23, 2013 | Stadler et al. |
20130131751 | May 23, 2013 | Stadler et al. |
20130138006 | May 30, 2013 | Bornzin et al. |
20130150695 | June 13, 2013 | Biela et al. |
20130150911 | June 13, 2013 | Perschbacher et al. |
20130150912 | June 13, 2013 | Perschbacher et al. |
20130184776 | July 18, 2013 | Shuros et al. |
20130196703 | August 1, 2013 | Masoud et al. |
20130197599 | August 1, 2013 | Sambelashvili et al. |
20130197609 | August 1, 2013 | Moore et al. |
20130231710 | September 5, 2013 | Jacobson |
20130238072 | September 12, 2013 | Deterre et al. |
20130238073 | September 12, 2013 | Makdissi et al. |
20130253342 | September 26, 2013 | Griswold et al. |
20130253343 | September 26, 2013 | Walfhauser et al. |
20130253344 | September 26, 2013 | Griswold et al. |
20130253345 | September 26, 2013 | Griswold et al. |
20130253346 | September 26, 2013 | Griswold et al. |
20130253347 | September 26, 2013 | Griswold et al. |
20130261497 | October 3, 2013 | Pertijs et al. |
20130265144 | October 10, 2013 | Banna et al. |
20130268017 | October 10, 2013 | Zhang et al. |
20130268042 | October 10, 2013 | Hastings et al. |
20130274828 | October 17, 2013 | Willis |
20130274847 | October 17, 2013 | Ostroff |
20130282070 | October 24, 2013 | Cowan et al. |
20130282073 | October 24, 2013 | Cowan et al. |
20130296727 | November 7, 2013 | Sullivan et al. |
20130303872 | November 14, 2013 | Taff et al. |
20130324825 | December 5, 2013 | Ostroff et al. |
20130325081 | December 5, 2013 | Karst et al. |
20130345770 | December 26, 2013 | Dianaty et al. |
20140012344 | January 9, 2014 | Hastings et al. |
20140018876 | January 16, 2014 | Ostroff |
20140018877 | January 16, 2014 | Demmer et al. |
20140031836 | January 30, 2014 | Ollivier |
20140039591 | February 6, 2014 | Drasler et al. |
20140043146 | February 13, 2014 | Makdissi et al. |
20140046395 | February 13, 2014 | Regnier et al. |
20140046420 | February 13, 2014 | Moore et al. |
20140058240 | February 27, 2014 | Mothilal et al. |
20140058494 | February 27, 2014 | Ostroff et al. |
20140339570 | November 20, 2014 | Carroll et al. |
20140074114 | March 13, 2014 | Khairkhahan et al. |
20140074186 | March 13, 2014 | Faltys et al. |
20140094891 | April 3, 2014 | Pare et al. |
20140100627 | April 10, 2014 | Min |
20140107723 | April 17, 2014 | Hou et al. |
20140114173 | April 24, 2014 | Bar-Tal et al. |
20140114372 | April 24, 2014 | Ghosh et al. |
20140012893 | January 9, 2014 | Kumar et al. |
20140121719 | May 1, 2014 | Bonner et al. |
20140121720 | May 1, 2014 | Bonner et al. |
20140121722 | May 1, 2014 | Sheldon et al. |
20140135865 | May 15, 2014 | Hastings et al. |
20140142648 | May 22, 2014 | Smith et al. |
20140148675 | May 29, 2014 | Nordstrom et al. |
20140148815 | May 29, 2014 | Wenzel et al. |
20140155950 | June 5, 2014 | Hastings et al. |
20140169162 | June 19, 2014 | Romano et al. |
20140172060 | June 19, 2014 | Bornzin |
20140180306 | June 26, 2014 | Grubac et al. |
20140180366 | June 26, 2014 | Edlund |
20140207149 | July 24, 2014 | Hastings et al. |
20140207210 | July 24, 2014 | Willis et al. |
20140214104 | July 31, 2014 | Greenhut et al. |
20140222098 | August 7, 2014 | Baru et al. |
20140222109 | August 7, 2014 | Moulder |
20140228913 | August 14, 2014 | Molin et al. |
20140236172 | August 21, 2014 | Hastings et al. |
20140243848 | August 28, 2014 | Auricchio et al. |
20140255298 | September 11, 2014 | Cole et al. |
20140257324 | September 11, 2014 | Fain |
20140257422 | September 11, 2014 | Herken |
20140257444 | September 11, 2014 | Cole et al. |
20140276929 | September 18, 2014 | Foster et al. |
20140303704 | October 9, 2014 | Suwito et al. |
20140309706 | October 16, 2014 | Jacobson |
20140323882 | October 30, 2014 | Ghosh et al. |
20140323892 | October 30, 2014 | Ghosh et al. |
20140330208 | November 6, 2014 | Christie et al. |
20140330287 | November 6, 2014 | Thompson-Naumann et al. |
20140336326 | November 13, 2014 | Thompson-Naumann et al. |
20140358135 | December 4, 2014 | Sambelashvili et al. |
20140371832 | December 18, 2014 | Ghosh |
20140371833 | December 18, 2014 | Ghosh et al. |
20140379041 | December 25, 2014 | Foster |
20150025612 | January 22, 2015 | Haasl et al. |
20150039041 | February 5, 2015 | Smith et al. |
20150051609 | February 19, 2015 | Schmidt et al. |
20150051610 | February 19, 2015 | Schmidt et al. |
20150051611 | February 19, 2015 | Schmidt et al. |
20150051612 | February 19, 2015 | Schmidt et al. |
20150051613 | February 19, 2015 | Schmidt et al. |
20150051614 | February 19, 2015 | Schmidt et al. |
20150051615 | February 19, 2015 | Schmidt et al. |
20150051616 | February 19, 2015 | Haasl et al. |
20150051682 | February 19, 2015 | Schmidt et al. |
20150057520 | February 26, 2015 | Foster et al. |
20150057558 | February 26, 2015 | Stahmann et al. |
20150057721 | February 26, 2015 | Stahmann et al. |
20150088155 | March 26, 2015 | Foster et al. |
20150105836 | April 16, 2015 | Bonner et al. |
20150142070 | May 21, 2015 | Sambelashvili |
20150148697 | May 28, 2015 | Bumes et al. |
20150149096 | May 28, 2015 | Soykan |
20150157861 | June 11, 2015 | Aghassian |
20150173655 | June 25, 2015 | Demmer et al. |
20150019063 | January 15, 2015 | Smith et al. |
20150196756 | July 16, 2015 | Stahmann et al. |
20150196757 | July 16, 2015 | Stahmann et al. |
20150196758 | July 16, 2015 | Stahmann et al. |
20150196769 | July 16, 2015 | Stahmann et al. |
20150217119 | August 6, 2015 | Nikolski et al. |
20150221898 | August 6, 2015 | Chi et al. |
20150224315 | August 13, 2015 | Stahmann |
20150224320 | August 13, 2015 | Stahmann |
20150258345 | September 17, 2015 | Smith et al. |
20150290468 | October 15, 2015 | Zhang |
20150297905 | October 22, 2015 | Greenhut et al. |
20150297907 | October 22, 2015 | Zhang |
20150305637 | October 29, 2015 | Greenhut et al. |
20150305638 | October 29, 2015 | Zhang |
20150305639 | October 29, 2015 | Greenhut et al. |
20150305640 | October 29, 2015 | Reinke et al. |
20150305641 | October 29, 2015 | Stadler et al. |
20150305642 | October 29, 2015 | Reinke et al. |
20150305695 | October 29, 2015 | Lahm et al. |
20150306374 | October 29, 2015 | Seifert et al. |
20150306375 | October 29, 2015 | Marshall et al. |
20150306406 | October 29, 2015 | Crutchfield et al. |
20150306407 | October 29, 2015 | Crutchfield et al. |
20150306408 | October 29, 2015 | Greenhut et al. |
20150321016 | November 12, 2015 | O'Brien et al. |
20150328459 | November 19, 2015 | Chin et al. |
20150335894 | November 26, 2015 | Bornzin et al. |
20160015287 | January 21, 2016 | Anderson et al. |
20160015322 | January 21, 2016 | Anderson et al. |
20160023000 | January 28, 2016 | Cho et al. |
20160030757 | February 4, 2016 | Jacobson |
20160033177 | February 4, 2016 | Barot et al. |
20160045738 | February 18, 2016 | Ghosh et al. |
20160051821 | February 25, 2016 | Sambelashvili et al. |
20160059002 | March 3, 2016 | Grubac et al. |
20160067486 | March 10, 2016 | Brown et al. |
20160067487 | March 10, 2016 | Demmer et al. |
20160067490 | March 10, 2016 | Carney et al. |
20160114161 | April 28, 2016 | Amblard et al. |
20160121127 | May 5, 2016 | Klimovitch et al. |
20160121128 | May 5, 2016 | Fishier et al. |
20160121129 | May 5, 2016 | Persson et al. |
20160129239 | May 12, 2016 | Anderson |
20160213919 | July 28, 2016 | Suwito et al. |
20160213939 | July 28, 2016 | Carney et al. |
20160228026 | August 11, 2016 | Jackson |
20160310733 | October 27, 2016 | Sheldon et al. |
20160317825 | November 3, 2016 | Jacobson |
20160367823 | December 22, 2016 | Cowan et al. |
20170014629 | January 19, 2017 | Ghosh et al. |
20170035315 | February 9, 2017 | Jackson |
20170043173 | February 16, 2017 | Sharma et al. |
20170043174 | February 16, 2017 | Greenhut et al. |
20170056670 | March 2, 2017 | Sheldon et al. |
20170182327 | June 29, 2017 | Liu |
20170189681 | July 6, 2017 | Anderson |
20170209689 | July 27, 2017 | Chen |
20170216575 | August 3, 2017 | Asleson et al. |
20170304624 | October 26, 2017 | Friedman et al. |
20170326369 | November 16, 2017 | Koop et al. |
20170340885 | November 30, 2017 | Sambelashvili |
20180000215 | January 4, 2018 | An et al. |
20180008829 | January 11, 2018 | An et al. |
20180021567 | January 25, 2018 | An et al. |
20180021581 | January 25, 2018 | An et al. |
20180050208 | February 22, 2018 | Shuros et al. |
20180078773 | March 22, 2018 | Thakur et al. |
20180078779 | March 22, 2018 | An et al. |
20180117324 | May 3, 2018 | Schilling et al. |
20180140848 | May 24, 2018 | Stahmann |
20180178007 | June 28, 2018 | Shuros et al. |
20180212451 | July 26, 2018 | Schmidt et al. |
20180256904 | September 13, 2018 | Li |
20180264262 | September 20, 2018 | Haasl et al. |
20180264272 | September 20, 2018 | Haasl et al. |
20180264273 | September 20, 2018 | Haasl et al. |
20180264274 | September 20, 2018 | Haasl et al. |
20180280686 | October 4, 2018 | Shuros et al. |
20180326215 | November 15, 2018 | Ghosh |
20190030346 | January 31, 2019 | Li |
20190038906 | February 7, 2019 | Koop et al. |
20190083779 | March 21, 2019 | Yang et al. |
20190083800 | March 21, 2019 | Yang et al. |
20190083801 | March 21, 2019 | Yang et al. |
20190192860 | June 27, 2019 | Ghosh et al. |
20190269926 | September 5, 2019 | Ghosh |
20210085986 | March 25, 2021 | Li et al. |
2008279789 | October 2011 | AU |
2008329620 | May 2014 | AU |
2014203793 | July 2014 | AU |
202933393 | May 2013 | CN |
0362611 | April 1990 | EP |
0459 239 | December 1991 | EP |
0 728 497 | August 1996 | EP |
1 541 191 | June 2005 | EP |
1 702 648 | September 2006 | EP |
1 904 166 | June 2011 | EP |
2 452 721 | May 2012 | EP |
2 471 452 | July 2012 | EP |
2 662 113 | November 2013 | EP |
1 703 944 | July 2015 | EP |
2005245215 | September 2005 | JP |
WO 95/00202 | January 1995 | WO |
WO 96/36134 | November 1996 | WO |
WO 97/24981 | July 1997 | WO |
WO 02/22206 | March 2002 | WO |
WO 03/092800 | November 2003 | WO |
WO 2005/000206 | January 2005 | WO |
WO 2005/042089 | May 2005 | WO |
WO 2006/086435 | August 2006 | WO |
WO 2006/113659 | October 2006 | WO |
2006/116595 | November 2006 | WO |
WO 2007/073435 | June 2007 | WO |
WO 2007/075974 | July 2007 | WO |
2008/042887 | April 2008 | WO |
WO 2009/006531 | January 2009 | WO |
WO 2013/080038 | June 2013 | WO |
WO 2013/098644 | July 2013 | WO |
WO 2015/081221 | June 2015 | WO |
2015/193047 | December 2015 | WO |
WO 2016/011042 | January 2016 | WO |
WO 2016/077099 | May 2016 | WO |
WO 2016/110856 | July 2016 | WO |
WO 2016/171891 | October 2016 | WO |
WO 2017/075193 | May 2017 | WO |
WO 2018/009569 | January 2018 | WO |
WO 2018/017226 | January 2018 | WO |
WO 2018/017361 | January 2018 | WO |
WO 2018/035343 | February 2018 | WO |
WO 2018/081519 | May 2018 | WO |
- US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
- http://www.isrctn.com/ISRCTN47824547, public posting published 08/19.
- Abed et al., “Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation,” Heart Rhythm Society, Jan. 2013; 10(1):90-100.
- Adragão et al., “Ablation of pulmonary vein foci for the treatment of atrial fibrillation; percutaneous electroanatomical guided approach,” Europace, Oct. 2002; 4(4):391-9.
- Aliot et al., “Arrhythmia detection by dual-chamber implantable cardioverter defibrillators: A review of current algorithms,” Europace, Jul. 2004; 6(4):273-86.
- Amirahmadi et al., “Ventricular Tachycardia Caused by Mesothelial Cyst,” Indian Pacing and Electrophysiology Journal, 2013; 13 (1): 43 -44.
- Ammirabile et al., “Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium,” Cardiovasc Res., Feb. 2012; 93(2):291-30L.
- Anfinsen, “Non-pharmacological Treatment of Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2002; 2(1):4-14.
- Anné et al., “Ablation of post-surgical intra-atrial reentrant Tachycardia,” European Heart Journal, 2002; 23:169-1616.
- Arenal et al., “Dominant frequency differences in atrial fibrillation patients with and without left ventricular systolic dysfunction,” Europace, Apr. 2009; 11(4):450-457.
- Arriagada et al., “Predictors of arrhythmia recurrence in patients with lone atrial fibrillation,” Europace, Jan. 2008; 10(1):9-14.
- Asirvatham et al., “Cardiac Anatomic Considerations in Pediatric Electrophysiology,” Indian Pacing and Electrophysiology Journal, Apr. 2008; 8(Suppl 1):S75-S91.
- Asirvatham et al., “Intramyocardial Pacing and Sensing for the Enhancement of Cardiac Stimulation and Sensing Specificity,” Pacing Clin. Electrophysiol., Jun. 2007; 30(6):748-754.
- Asirvatham et al., “Letter to the Editor,” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E77.
- Balmer et al., “Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy,” Europace, Oct. 2002; 4(4):345-349.
- Barold et al., “Conventional and biventricular pacing in patients with first-degree atrioventricular block,” Europace, Oct. 2012; 14(10):1414-9.
- Barold et al., “The effect of hyperkalaemia on cardiac rhythm devices,” Europace, Apr. 2014; 16(4):467-76.
- Bayrak et al., “Added value of transoesophageal echocardiography during transseptal puncture performed by inexperienced operators,” Europace, May 2012; 14(5):661-5.
- Bergau et al., “Measurement of Left Atrial Pressure is a Good Predictor of Freedom From Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):181-93.
- Bernstein et al., “The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group,” Pacing Clin Electrophysiol., Feb. 2002; 25(2):260-4.
- Bito et al., “Early exercise training after myocardial infarction prevents contractile but not electrical remodeling or hypertrophy,” Cardiovascular Research, Apr. 2010; 86(1):72-81.
- Bollmann et al., “Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications,” Europace, Nov. 2006; 8(11):911-926.
- Bortone et al., “Evidence for an incomplete mitral isthmus block after failed ablation of a left postero-inferior concealed accessory pathway,” Europace, Jun. 2006; 8(6):434-7.
- Boulos et al., “Electroanatomical mapping and radiofrequency ablation of an accessory pathway associated with a large aneurysm of the coronary sinus,” fEuropace, Nov. 2004; 6(6):608-12.
- Brembilla-Perrot et al., “Incidence and prognostic significance of spontaneous and inducible antidromic tachycardia,” Europace, Jun. 2013; 15(6):871-876.
- Buber et al., “Morphological features of the P-waves at surface electrocardiogram as surrogate to mechanical function of the left atrium following a successful modified maze procedure,” Europace, Apr. 2014; 16(4):578-86.
- Burashnikov et al., “Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation,” Pacing Clin Electrophysiol., Mar. 2006; 29(3):290-5.
- Burashnikov et al., “Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation,” Heart Rhythm, Jan. 2012; 9(1):125-31.
- Calvo et al., “Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes,” Europace, Jan. 2010; 12(1):30-6.
- Can et al., ““Atrial torsades de pointes” Induced by Low-Energy Shock From Implantable-Cardioverter Defibrillator,” Indian Pacing and Electrophysiology Journal, Sep. 2013; 13(5):194-199.
- Carroz et al., “Pseudo-pacemaker syndrome in a young woman with first-degree atrio-ventricular block,” Europace, Apr. 2010; 12(4):594-596.
- Catanchin et al., “Wolff-Parkinson-White syndrome with an unroofed coronary sinus without persistent left superior vena cava treated with catheter cryoablation,” Indian Pacing and Electrophysiology Journal, Aug. 2008; 8(3):227-233.
- Cazeau et al., “Cardiac resynchronization therapy,” Europace, Sep. 2004; 5 Suppl 1:S42-8.
- Chandra et al., “Evaluation of KCB-328, a new IKr blocking anti arrhythmic agent in pacing induced canine atrial fibrillation,” Europace, Sep. 2004; 6(5):3 84-91.
- Chang et al., “Electrophysiological characteristics and catheter ablation in patients with paroxysmal supraventricular tachycardia and paroxysmal atrial fibrillation,” J Cardiovasc Electrophysiol., Apr. 2008; 19(4):367-73.
- Charron et al., “A familial form of conduction defect related to a mutation in the PRKAG2 gene,” Europace, Aug. 2007; 9(8):597-600.
- Chou et al., “Effects of SEA0400 on Arrhythmogenicity in a Langendorff-Perfused 1-Month Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., May 2013; 36(5):596-606.
- Ciploetta et al., “Posterior Coronary Vein as the Substrate for an Epicardial Accessory Pathway,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):142-7.
- Climent et al., “Effects of endocardial microwave energy ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2005; 5(3):233-43.
- Comtois et al., “Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry,” Europace, Sep. 2005; 7 Suppl 2:10-20.
- Crick et al., “Anatomy of the pig heart: comparisons with normal human cardiac structure,” J. Anat.,1998, 193:105-119.
- Daoulah et al., “Unintended Harm and Benefit of the Implantable Defibrillator in an Unfortunate 19-Year-Old Male: Featuring a Sequence of Rare Life-threatening Complications of Cardiac Procedures,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13 (4): 151 -6.
- De Mattia et al., “Paroxysmal atrial fibrillation triggered by a monomorphic ventricular couplet in a patient with acute coronary syndrome,” Indian Pacing and Electrophysiology Journal, Jan. 2012; 12(1): 19-23.
- DeSimone et al., “New approach to cardiac resynchronization therapy: CRT without left ventricular lead,” Apr. 25, 2014, 2 pages.
- De Sisti et al., “Electrophysiological determinants of atrial fibrillation in sinus node dysfunction despite atrial pacing,” Europace, Oct. 2000; 2(4):304-11.
- De Voogt et al., “Electrical characteristics of low atrial septum pacing compared with right atrial appendage pacing,” Europace, Jan. 2005; 7(l):60-6.
- De Voogt et al., “A technique of lead insertion for low atrial septal pacing,” Pacing Clin Electrophysiol., Jul. 2005; 28(7):639-46.
- Dizon et al. “Real-time stroke volume measurements for the optimization of cardiac resynchronization therapy parameters,” Europace, Sep. 2010; 12(9):1270-1274.
- Duckett et al., “Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy,” Europace, Jan. 2012; 14(1):99-106.
- Eksik et al., “Influence of atrioventricular nodal reentrant tachycardia ablation on right to left inter-atrial conduction,” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):279-88.
- Fiala et al., “Left Atrial Voltage during Atrial Fibrillation in Paroxysmal and Persistent Atrial Fibrillation Patients,” PACE, May 2010; 33(5):541-548.
- Fragakis et al., “Acute beta-adrenoceptor blockade improves efficacy of ibutilide in conversion of atrial fibrillation with a rapid ventricular rate,” Europace, Jan. 2009; 11(1):70-4.
- Frogoudaki et al., “Pacing for adult patients with left atrial isomerism: efficacy and technical considerations,” Europace, Apr. 2003; 5(2):189-193.
- Ganapathy et al., “Implantable Device to Monitor Cardiac Activity with Sternal Wires,” Pacing Clin. Electrophysiol., Dec. 2014; Epub Aug. 24, 2014; 37(12):1630-40.
- Geddes, “Accuracy limitations of chronaxie values,” IEEE Trans Biomed Eng., Jan. 2004; 51(1):176-81.
- Gertz et al., “The impact of mitral regurgitation on patients undergoing catheter ablation of atrial fibrillation,” Europace, Aug. 2011; 13(8):1127-32.
- Girmatsion et al., “Changes in microRNA-1 expression and IKI up-regulation in human atrial fibrillation,” Heart Rhythm, Dec. 2009; 6(12):1802-9.
- Goette et al., “Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles,” European Heart Journal, Jun. 2009; 30(11):1411-20.
- Goette et al., “Electrophysiological effects of angiotensin II. Part I: signal transduction and basic electrophysiological mechanisms,” Europace, Feb. 2008; 10(2):238-41.
- Gómez et al., “Nitric oxide inhibits Kv4.3 and human cardiac transient outward potassium current (Ito1),” Cardiovasc Res., Dec. 2008; 80(3):375-84.
- Gros et al., “Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate,” Cardiovascular Research, Jan. 2010; 85(1):45-55.
- Guenther et al., “Substernal Lead Implantation: A Novel Option to Manage OFT Failure in S-ICD patients,” Clinical Research Cardiology, Feb. 2015; Epub Oct. 2, 2014; 104(2):189-91.
- Guillem et al., “Noninvasive mapping of human atrial fibrillation,” J Cardiovasc Electrophysiol., May 2009; 20(5):507-513.
- Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
- Hakacova et al., “Septal atrial pacing for the prevention of atrial fibrillation,” Europace, 2007; 9:1124-1128.
- Hasan et al., “Safety, efficacy, and performance of implanted recycled cardiac rhythm management (CRM) devices in underprivileged patients,” Pacing Clin Electrophysiol., Jun. 2011; 34(6):653-8.
- Hawkins, “Epicardial Wireless Pacemaker for Improved Left Ventricular Reynchronization (Conceptual Design)”, Dec. 2010, A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo, 57 pp.
- He et al., “Three-dimensional cardiac electrical imaging from intracavity recordings,” IEEE Trans Biomed Eng., Aug. 2007; 54(8):1454-60.
- Heist et al., “Direct visualization of epicardial structures and ablation utilizing a visually guided laser balloon catheter: preliminary findings,” J Cardiovasc Electrophysiol., Jul. 2011; 22(7):808-12.
- Henz et al., “Synchronous Ventricular Pacing without Crossing the Tricuspid Valve or Entering the Coronary Sinus—Preliminary Results,” J Cardiovasc Electrophysiol., Dec. 2009; 20(12):1391-1397.
- Hiippala et al., “Automatic Atrial Threshold Measurement and Adjustment in Pediatric Patients,” Pacing Clin Electrophysiol., Mar. 2010; 33(3):309-13.
- Ho, “Letter to the Editor” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E76.
- Höijer et al., “Improved cardiac function and quality of life following upgrade to dual chamber pacing after long-term ventricular stimulation,” European Heart Journal, Mar. 2002; 23(6):490-497.
- Huang et al., “A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block,” Can J Cardiol., Dec. 2007; Epub Sep. 22, 2017; 33(12):1736.e1-1736.e.
- Inter-Office Memo, Model 6426-85 Canine Feasibility AV Septal 8 mm Screw-In Right Single Pass DDD Lead Final Report (AR # 0120A0207).
- Ishigaki et al., “Prevention of immediate recurrence of atrial fibrillation with low-dose landiolol after radiofrequency catheter ablation,” Journal of Arrhythmia, Oct. 2015; 31(5):279-285.
- Israel, “The role of pacing mode in the development of atrial fibrillation,” Europace, Feb. 2006; 8(2):89-95.
- Janion et al., “Dispersion of P wave duration and P wave vector in patients with atrial septal aneurysm,” Europace, Jul. 2007; 9(7):471-4.
- Kabra et al., “Recent Trends in Imaging for Atrial Fibrillation Ablation,” Indian Pacing and Electrophysiology Journal, 2010; 10(5):215-227.
- Kalbfleisch et al., “Catheter Ablation with Radiofrequency Energy: Biophysical Aspects and Clinical Applications,” Journal of Cardiovascular Electrophysiology, Oct. 2008; 3(2):173-186.
- Katritsis et al., “Classification and differential diagnosis of atrioventricular nodal reentrant tachycardia,” Europace, Jan. 2006; 8(1):29-36.
- Katritsis et al., “Anatomically left-sided septal slow pathway ablation in dextrocardia and situs inversus totalis,” Europace, Aug. 2008; 10(8):1004-5.
- Khairy et al., “Cardiac Arrhythmias In Congenital Heart Diseases,” Indian Pacing and Electrophysiology Journal, Nov.-Dec. 2009; 9(6):299-317.
- Kimmel et al., “Single-site ventricular and biventricular pacing: investigation of latest depolarization strategy,” Europace, Dec. 2007; 9(12):1163-1170.
- Knackstedt et al., “Electro-anatomic mapping systems in arrhythmias,” Europace, Nov. 2008; 10 Suppl 3:iii28-iii34.
- Kobayashi et al., “Successful Ablation of Antero-septal Accessory Pathway in the Non-Coronary Cusp in a Child,” Indian Pacing and Electrophysiology Journal, 2012; 12(3):124-130.
- Kojodjojo et al., “4:2:1 conduction of an AF initiating trigger,” Indian Pacing and Electrophysiology Journal, Nov. 2015; 15(5):255-8.
- Kołodzińska et al., “Differences in encapsulating lead tissue in patients who underwent transvenous lead removal,” Europace, Jul. 2012; 14(7):994-1001.
- Konecny et al., “Synchronous intra-myocardial ventricular pacing without crossing the tricuspid valve or entering the coronary sinus,” Cardiovascular Revascularization Medicine, 2013; 14:137-138.
- Kriatselis et al., “Ectopic atrial tachycardias with early activation at His site: radiofrequency ablation through a retrograde approach,” Europace, Jun. 2008; 10(6):698-704.
- Lalu et al., “Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart,” Eur Heart J., Jan. 2005; 26(1):27-3 5.
- Laske et al., “Excitation of the Intrinsic Conduction System Through His and Interventricular Septal Pacing,” Pacing Clin. Electrophysiol., Apr. 2006; 29(4):397-405.
- Leclercq, “Problems and troubleshooting in regular follow-up of patients with cardiac resynchronization therapy,” Europace, Nov. 2009; 11 Suppl 5:v66-71.
- Lee et al., “An unusual atrial tachycardia in a patient with Friedreich ataxia,” Europace, Nov. 2011; 13(11):1660-1.
- Lee et al., “Blunted Proarrhythmic Effect of Nicorandil in a Langendorff-Perfused Phase-2 Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., Feb. 2013; 36(2):142-51.
- Lemay et al., “Spatial dynamics of atrial activity assessed by the vectorcardiogram: from sinus rhythm to atrial fibrillation,” Europace, Nov. 2007; 9 Suppl 6:vi109-18.
- Levy et al., “Does the mechanism of action of biatrial pacing for atrial fibrillation involve changes in cardiac haemodynamics? Assessment by Doppler echocardiography and natriuretic peptide measurements,” Europace, Apr. 2000; 2(2):127-35.
- Lewalter et al., “Comparison of spontaneous atrial fibrillation electrogram potentials to the P wave electrogram amplitude in dual chamber pacing with unipolar atrial sensing,” Europace, Apr. 2000; 2(2):136-40.
- Liakopoulos et al., “Sequential deformation and physiological considerations in unipolar right and left ventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S188-197.
- Lian et al., “Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing,” IEEE Transactions on Biomedical Engineering, Aug. 2006; 53(8):1512-1520.
- Lim et al., “Right ventricular lead implantation facilitated by a guiding sheath in a patient with severe chamber dilatation with tricuspid regurgitation,” Indian Pacing and Electrophysiology Journal, Sep. 2011; 11(5):156-8.
- Lim et al., “Coupled pacing improves left ventricular function during simulated atrial fibrillation without mechanical dyssynchrony,” Europace, Mar. 2010; 12(3):430-6.
- Lou et al., “Tachy-brady arrhythmias: The critical role of adenosine-induced sinoatrial conduction block in post-tachycardia pauses,” Heart Rhythm., Jan. 2013; 10(1):110-8.
- Lutomsky et al., “Catheter ablation of paroxysmal atrial fibrillation improves cardiac function: a prospective study on the impact of atrial fibrillation ablation on left ventricular function assessed by magnetic resonance imaging,” Europace, May 2008; 10(5):593-9.
- Macedo et al., “Septal accessory pathway: anatomy, causes for difficulty, and an approach to ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2010; 10(7):292-309.
- Mafi-Rad et al., “Feasibility and Acute Hemodynamic Effect of Left Ventricular Septal Pacing by Transvenous Approach Through the Interventricular Septum,” Circ Arrhythm Electrophysoil., Mar. 2016; 9(3):e003344.
- Mani et al., “Dual Atrioventricular Nodal Pathways Physiology: A Review of Relevant Anatomy, Electrophysiology, and Electrocardiographic Manifestations,” Indian Pacing and Electrophysiology Journal, Jan. 2014; 14(1):12-25.
- Manios et al., “Effects of successful cardioversion of persistent atrial fibrillation on right ventricular refractoriness and repolarization,” Europace, Jan. 2005; 7(1):34-9.
- Manolis et al., “Prevention of atrial fibrillation by inter-atrial septum pacing guided by electrophysiological testing, in patients with delayed interatrial conduction,” Europace, Apr. 2002; 4(2):165-174.
- Marino et al., “Inappropriate mode switching clarified by using a chest radiograph,” Journal of Arrhythmia, Aug. 2015; 31(4):246-248.
- Markowitz et al., “Time course and predictors of autonomic dysfunction after ablation of the slow atrioventricular nodal pathway,” Pacing Clin Electrophysiol., Dec. 2004; 27(12):1638-43.
- Marshall et al., “The effects of temperature on cardiac pacing thresholds,” Pacing Clin Electrophysiol., Jul. 2010; 33(7):826-833.
- McSharry et al., “A Dynamical Model for Generating Synthetic Electrocardiogram Signals,” IEEE Transactions on Biomedical Engineering, Mar. 2003; 50(3):289-294.
- Meijler et al., “Scaling of Atrioventricular Transmission in Mammalian Species: An Evolutionary Riddle!,” Journal of Cfardiovascular Electrophysiology, Aug. 2002; 13(8):826-830.
- Meiltz et al., “Permanent form of junctional reciprocating tachycardia in adults: peculiar features and results of radiofrequency catheter ablation,” Europace, Jan. 2006; 8(1):21-8.
- Mellin et al., “Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure,” Eur Heart J., Aug. 2005; 26(15):1544-50.
- Mestan et al., “The influence of fluid and diuretic administration on the index of atrial contribution in sequentially paced patients,” Europace, Apr. 2006; 8(4):273-8.
- Metin et al., “Assessment of the P Wave Dispersion and Duration in Elite Women Basketball Players,” Indian Pacing and Electrophysiology Journal, 2010; 10(1):11-20.
- Mills et al., “Left Ventricular Septal and Left Ventricular Apical Pacing Chronically Maintain Cardiac Contractile Coordination, Pump Function and Efficiency,” Circ Arrhythm Electrophysoil., Oct. 2009; 2(5):571-579.
- Mitchell et al., “How do atrial pacing algorithms prevent atrial arrhythmias?” Europace, Jul. 2004; 6(4):351-62.
- Mirzoyev et al., “Embryology of the Conduction System for the Electrophysiologist,” Indian Pacing and Electrophysiology Journal, 2010; 10(8):329-338.
- Modre et al., “Noninvasive Myocardial Activation Time Imaging: A Novel Inverse Algorithm Applied to Clinical ECG Mapping Data,” IEE Transactions on Biomedical Engineering, Oct. 2002; 49(10):1153-1161.
- Montgomery et al., “Measurement of diffuse ventricular fibrosis with myocardial T1 in patients with atrial fibrillation,” J Arrhythm., Feb. 2016; 32(1):51-6.
- Mulpuru et al., “Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: Functional anatomy, terminology, and challenges,” Heart Rhythm, Nov. 2016; Epub Aug. 3, 2016; 13(11):2237-2246.
- Musa et al., “Inhibition of Platelet-Derived Growth Factor-AB Signaling Prevents Electromechanical Remodeling of Adult Atrial Myocytes that Contact Myofibroblasts,” Heart Rhythm, Jul. 2013; 10(7):1044-1051.
- Nagy et al., “Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and β-catenin expression,” Cardiovascular Research, Jan. 2010; 85(1):100-9.
- Namboodiri et al., “Electrophysiological features of atrial flutter in cardiac sarcoidosis: a report of two cases,” Indian Pacing and Electrophysiology Journal, Nov. 2012; 12(6):284-9.
- Nanthakumar et al., “Assessment of accessory pathway and atrial refractoriness by transesophageal and intracardiac atrial stimulation: An analysis of methodological agreement,” Europace, Jan. 1999; 1(1):55-62.
- Neto et al., “Temporary atrial pacing in the prevention of postoperative atrial fibrillation,” Pacing Clin Electrophysiol., Jan. 2007; 30(Suppl 1):S79-83.
- Nishijima et al., “Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology,” Cardiovasc Res., Jul. 2011; 91(1):71-9.
- Niwano et al., “Effect of oral L-type calcium channel blocker on repetitive paroxysmal atrial fibrillation: spectral analysis of fibrillation waves in the Holter monitoring,” Europace, Dec. 2007; 9(12):1209-1215.
- Okumura et al., “Effects of a high-fat diet on the electrical properties of porcine atria,” Journal of Arrhythmia, Dec. 2015; 31(6):352-358.
- Olesen et al., “Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation,” Cardiovascular Research, Mar. 2011; 89(4):786-93.
- Ozmen et al., “P wave dispersion is increased in pulmonary stenosis,” Indian Pacing and Electrophysiology Journal, Jan. 2006; 6(1):25-30.
- Packer et al., “New generation of electro-anatomic mapping: Full intracardiac image integration,” Europace, Nov. 2008; 10 Suppl 3:iii35-41.
- Page et al., “Ischemic ventricular tachycardia presenting as a narrow complex tachycardia,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):203-210.
- Pakarinen et al., “Pre-implant determinants of adequate long-term function of single lead VDD pacemakers,” Europace, Apr. 2002; 4:137-141.
- Patel et al., “Atrial Fibrillation after Cardiac Surgery: Where are we now?” Indian Pacing and Electrophysiology Journal, Oct.-Dec. 2008; 8(4):281-291.
- Patel et al., “Successful ablation of a left-sided accessory pathway in a patient with coronary sinus atresia and arteriovenous fistula: clinical and developmental insights,” Indian Pacing and Electrophysiology Journal, Mar. 2011; 11(2):43-49.
- Peschar et al., “Left Ventricular Septal and Apex Pacing for Optimal Pump Function in Canine Hearts,” J Am Coll Cardiol., Apr. 2, 2003; 41(7):1218-1226.
- Physiological Research Laboratories, Final Report for an Acute Study for Model 6426-85 AV Septal Leads, Feb. 1996.
- Porciani et al., “Interatrial septum pacing avoids the adverse effect of interatrial delay in biventricular pacing: an echo-Doppler evaluation,” Europace, Jul. 2002; 4(3):317-324.
- Potse et al., “A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart,” IEEE Transactions on Biomedical Engineering, Dec. 2006; 53(12 Pt 1):2425-35.
- Prystowsky et al., “Case studies with the experts: management decisions in atrial fibrillation,” J Cardiovasc Electrophysiol., Feb. 2008; 19(Suppl. 1):S1-12.
- Prystowsky, “The history of atrial fibrillation: the last 100 years,” J Cardiovasc Electrophysiol, Jun. 2008; 19(6):575-582.
- Pytkowski et al., “Paroxysmal atrial fibrillation is associated with increased intra-atrial conduction delay,” Europace, Dec. 2008; 10(12):1415-20.
- Qu et al., “Dynamics and cardiac arrhythmias,” J Cardiovasc Electrophysiol., Sep. 2006; 17(9):1042-9.
- Ravens et al., “Role of potassium currents in cardiac arrhythmias,” Europace, Oct. 2008; 10(10):1133-7.
- Ricci et al., Efficacy of a dual chamber defibrillator with atrial antitachycardia functions in treating spontaneous atrial tachyarrhythmias in patients with lifethreatening ventricular tachyarrhythmias, European Heart Journal, Sep. 2002; 23(18):1471-9.
- Roberts-Thomson et al., “Focal atrial tachycardia II: management,” Pacing Clin Electrophysiol., Jul. 2006; 29(7):769-78.
- Rossi et al., “Endocardial vagal atrioventricular node stimulation in humans: reproducibility on 18-month follow-up,” Europace, Dec. 2010; 12(12):1719-24.
- Rouzet et al., “Contraction delay of the RV outflow tract in patients with Brugada syndrome is dependent on the spontaneous ST-segment elevation pattern,” Heart Rhythm, Dec. 2011; 8(12): 1905-12.
- Russo et al., “Atrial Fibrillation and Beta Thalassemia Major: The Predictive Role of the 12-lead Electrocardiogram Analysis,” Indian Pacing and Electrophysiology Journal, May 2014; 14(3):121-32.
- Ryu et al., “Simultaneous Electrical and Mechanical Mapping Using 3D Cardiac Mapping System: Novel Approach for Optimal Cardiac Resynchronization Therapy,” Journal of Cardiovascular Electrophysiology, Feb. 2010, 21(2): 219-22.
- Sairaku et al., “Prediction of sinus node dysfunction in patients with persistent atrial flutter using the flutter cycle length,” Europace, Mar. 2012; 14(3):380-7.
- Santini et al., “Immediate and long-term atrial sensing stability in single-lead VDD pacing depends on right atrial dimensions,” Europace, Oct. 2001; 3(4):324-31.
- Saremi et al., “Cardiac Conduction System: Delineation of Anatomic Landmarks With Multi detector CT,” Indian Pacing and Electrophysiology Journal, Nov. 2009; 9(6):318-33.
- Savelieva et al., “Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches,” Europace, Jun. 2008; 10(6):647-665.
- Schmidt et al., “Navigated DENSE strain imaging for post-radiofrequency ablation lesion assessment in the swine left atria,” Europace, Jan. 2014; 16(1):133-41.
- Schoonderwoerd et al., “Rapid Pacing Results in Changes in Atrial but not in Ventricular Refractoriness,” Pacing Clin Electrophysiol., Mar. 2002; 25(3):287-90.
- Schoonderwoerd et al., “Atrial natriuretic peptides during experimental atrial tachycardia: role of developing tachycardiomyopathy,” J Cardiovasc Electrophysiol., Aug. 2004; 15(8):927-32.
- Schoonderwoerd et al., “Atrial ultrastructural changes during experimental atrial tachycardia depend on high ventricular rate,” J Cardiovasc Electrophysiol., Oct. 2004; 15(10):1167-74.
- Sedmera, “Function and form in the developing cardiovascular system,” Cardiovasc Res., Jul. 2011; 91(2):252-9.
- Severi et al., “Alterations of atrial electrophysiology induced by electrolyte variations: combined computational and P-wave analysis,” Europace, Jun. 2010; 12(6):842-9.
- Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering, vol. 60(8): 2067-2079, 2013.
- Shah et al., “Stable atrial sensing on long-term follow up of VDD pacemakers,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):189-93.
- Shenthar et al., “Permanent pacemaker implantation in a patient with situs solitus, dextrocardia, and corrected transposition of the great arteries using a novel angiographic technique,” Journal of Arrhythmia, Apr. 2014; 30(2):134-138.
- Shenthar et al., “Transvenous permanent pacemaker implantation in dextrocardia: technique, challenges, outcome, and a brief review of literature,” Europace, Sep. 2014; 16(9):1327-33.
- Shirayama, “Role of atrial fibrillation threshold evaluation on guiding treatment,” Indian Pacing and Electrophysiology Journal, Oct. 2003; 3(4):224-230.
- Sperzel et al., “Intraoperative Characterization of Interventricular Mechanical Dyssynchrony Using Electroanatomic Mapping System—A Feasibility Study,” Journal of Interventional Cardiac Electrophysiology, Nov. 2012, 35(2): 189-96.
- Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
- Sreeram et al., “Indications for Electrophysiology Study in children,” Indian Pacing and Electrophysiology Journal, Apr.-Jun. 2008; 8(Suppl. 1 ):S36-S54.
- Stockburger et al., “Optimization of cardiac resynchronization guided by Doppler echocardiography: haemodynamic improvement and intraindividual variability with different pacing configurations and atrioventricular delays,” Europace, Oct. 2006; 8(10):881-6.
- Stroobandt et al., “Prediction of Wenckebach Behavior and Block Response in DDD Pacemakers,” Pacing Clin Electrophysiol., Jun. 2006; 9(6):1040-6.
- Suenari et al., “Idiopathic left ventricular tachycardia with dual electrocardiogram morphologies in a single patient,” Europace, Apr. 2010; 12(4):592-4.
- Sweeney et al., “Analysis of Ventricular Activation Using Surface Electrocardiography to Predict Left Ventricular Reverse Volumetric Remodeling During Cardiac Resynchronization Therapy,” Circulation, Feb. 9, 2010, 121(5): 626-34.
- Tan et al., “Electrocardiographic evidence of ventricular repolarization remodelling during atrial fibrillation,” Europace, Jan. 2008; 10(1):99-104.
- Taramasco et al., “Internal low-energy cardioversion: a therapeutic option for restoring sinus rhythm in chronic atrial fibrillation after failure of external cardioversion,” Europace, Jul. 1999; 1(3):179-82.
- Testa et al., “Rate-control or rhythm-control: where do we stand?” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):296-304.
- Thejus et al., “N-terminal Pro-Brain Natriuretic Peptide and Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2009; 9(1):1-4.
- Thornton et al., “Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: A Review,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):202-13.
- Tilz et al., “In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force,” Europace, Sep. 2014; 16(9):1387-95.
- Tomaske et al., “Do daily threshold trend fluctuations of epicardial leads correlate with pacing and sensing characteristics in paediatric patients?” Europace, Aug. 2007, 9(8):662-668.
- Tomioka et al., “The effect of ventricular sequential contraction on helical heart during pacing: high septal pacing versus biventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S198-206.
- Tournoux et al., “A ‘Regularly Irregular’ tachycardia: What is the diagnosis?” Europace, Dec. 2008; 10(12):1445-6.
- Traykov et al., “Electrogram analysis at the His bundle region and the proximal coronary sinus as a tool to predict left atrial origin of focal atrial tachycardias,” Europace, Jul. 2011; 13(7):1022-7.
- Trudel et al., “Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing,” IEEE Trans Biomed Eng., Aug. 2004; 51(8):1319-29.
- Tse et al., “Cardiac dynamics: Alternans and arrhythmogenesis,” Journal of Arrhythmia, Oct. 2016; 32(5):411-417.
- Tse, “Mechanisms of cardiac arrhythmias,” Journal of Arrhythmia, Apr. 2016, 32(2):75-81.
- Ueda et al., “Outcomes of single- or dual-chamber implantable cardioverter defibrillator systems in Japanese patients,” Journal of Arrhythmia, Apr. 2016, 32(2):89-94.
- Van Dam et al., “Volume conductor effects involved in the genesis of the P wave,” Europace, Sep. 2005; 7 Suppl 2:30-8.
- Van den Berg et al., “Depletion of atrial natriuretic peptide during longstanding atrial fibrillation,” Europace, Sep. 2004, 6(5):433-7.
- Van Deursen, et al., “Vectorcardiography as a Tool for Easy Optimization of Cardiac Resynchronization Therapy in Canine LBBB Hearts,” Circulation Arrhythmia and Electrophysiology, Jun. 1, 2012, 5(3): 544-52.
- Van Opstal et al., “Paradoxical increase of stimulus to atrium interval despite His-bundle capture during para-Hisian pacing,” Europace, Dec. 2009, 11(12):1702-4.
- Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardia: part 1,” Pacing Clin Eleclrophysiol., Jun. 2011; 34(6):767-82.
- Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardias: part 2,” Pacing Clin Eleclrophysiol., Jun. 2012; 35(6):757-69.
- Veenhuyzen et al., “Principles of Entrainment: Diagnostic Utility for Supraventricular Tachycardia,” Indian Pacing and Electrophysiology Journal, 2008; 8(1):51-65.
- Verbrugge et al., “Revisiting diastolic filling time as mechanistic insight for response to cardiac resynchronization therapy,” Europace, Dec. 2013; 15(12):1747-56.
- Verrier et al., “Mechanisms of ranolazine's dual protection against atrial and ventricular fibrillation,” Europace, Mar. 2013; 15(3):317-324.
- Verrijcken et al., “Pacemaker-mediated tachycardia with varying cycle length: what is the mechanism?” Europace, Oct. 2009; 11(10):1400-2.
- Villani et al., “Reproducibility of internal atrial defibrillation threshold in paroxysmal and persistent atrial fibrillation,” Europace, Jul. 2004; 6(4):267-72.
- Violi et al., “Antioxidants for prevention of atrial fibrillation: a potentially useful future therapeutic approach? A review of the literature and meta-analysis,” Europace, Aug. 2014; 16(8):1107-1116.
- Weber et al., “Adenosine sensitive focal atrial tachycardia originating from the noncoronary aortic cusp,” Europace, Jun. 2009; 11(6):823-6.
- Weber et al., “Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model,” Europace, Jan. 2014; 16(1):142-8.
- Wegmoller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
- Wei et al., “Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models.” IEEE Trans Biomed Eng., Apr. 1995; 42(4):343-57.
- Weijs et al., “Clinical and echocardiographic correlates of intra-atrial conduction delay,” Europace, Dec. 2011; 13(12):1681-7.
- Weiss et al., “The influence of fibre orientation, extracted from different segments of the human left ventricle, on the activation and repolarization sequence: a simulation study,” Europace, Nov. 2007; 9(Suppl. 6):vi96-vi104.
- Wetzel et al., “A stepwise mapping approach for localization and ablation of ectopic right, left, and septal atrial foci using electroanatomic mapping,” European Heart Journal, Sep. 2002; 23(17):1387-1393.
- Wlodarska et al., “Thromboembolic complications in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy,” Europace, Aug. 2006; 8(8):596-600.
- Wong et al., “A review of mitral isthmus ablation,” Indian Pacing and Electrophysiology Journal, 2012; 12(4):152-170.
- Wu et al., “Acute and long-term outcome after catheter ablation of supraventricular tachycardia in patients after the Mustard or Senning operation for D-transposition of the great arteries,” Europace, Jun. 2013; 15(6):886-91.
- Xia et al., “Asymmetric dimethylarginine concentration and early recurrence of atrial fibrillation after electrical cardioversion,” Pacing Clin Electrophysiol., Aug. 2008; 31(8):1036-40.
- Yamazaki et al., “Acute Regional Left Atrial Ischemia Causes Acceleration of Atrial Drivers during Atrial Fibrillation,” Heart Rhythm, Jun. 2013; 10(6):901-9.
- Yang et al., “Focal atrial tachycardia originating from the distal portion of the left atrial appendage: Characteristics and long-term outcomes of radiofrequency ablation,” Europace, Feb. 2012; 14(2):254-60.
- Yiginer et al., “Advanced Age, Female Gender and Delay in Pacemaker Implantation May Cause TdP in Patients With Complete Atrioventricular Block,” Indian Pacing and Electrophysiology Journal, Oct. 2010; 10(10):454-63.
- Yoon et al., “Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion.” IEEE Transactions on Biomedical Engineering. Oct. 2003; 50(10):1167-1773.
- Yuan et al., “Recording monophasic action potentials using a platinum-electrode ablation catheter,” Europace, Oct. 2000; 2(4):312-9.
- Yusuf et al., “5-Hydroxytryptamine and Atrial Fibrillation: How Significant is This Piece in the Puzzle?” J Cardiovasc Electrophysiol., Feb. 2003; 14(2):209-14.
- Zaugg et al., “Current concepts on ventricular fibrillation: a vicious circle of cardiomyocyte calcium overload in the initiation, maintenance, and termination of ventricular fibrillation,” Indian Pacing and Electrophysiology Journal, Apr. 2004; 4(2):85-92.
- Zhang et al., “Acute atrial arrhythmogenicity and altered Ca(2+) homeostasis in murine RyR2-P2328S hearts,” Cardiovascular Research, Mar. 2011, 89(4):794-804.
- Zoghi et al., “Electrical stunning and hibernation: suggestion of new terms for short- and long-term cardiac memory,” Europace, Sep. 2004, 6(5):418-24.
- Zografos et al., “Inhibition of the renin-angiotensin system for prevention of atrial fibrillation,” Pacing Clin Electrophysiol., Oct. 2010; 33(10):1270-85.
- (PCT/US2014/066792) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
- (PCT/US2014/013601) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
- (PCT/US2014/036782) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Aug. 22, 2014, 11 pages.
- International Search Report and Written Opinion for Application No. PCT/US2017/047378, 8 pages, date dated Dec. 6, 2017.
- (PCT/US2018/050988) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, datedd Nov. 14, 2018, 11 pages.
- (PCT/US20 U.S. Appl. No. 18/050,993) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 16, 2018, 7 pages.
- (PCT/US2019/023642) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 28, 2019, 14 pages.
- International Search Report and Written Opinion for PCT Application No. PCT/US2020/019200 dated May 29, 2020, 9 pages.
Type: Grant
Filed: Apr 1, 2019
Date of Patent: Jan 4, 2022
Patent Publication Number: 20200306529
Assignee: Medtronic, Inc. (Minneapolis, MN)
Inventors: Andrea J. Asleson (Maple Grove, MN), Zhongping Yang (Woodbury, MN), Ruth N. Klepfer (St. Louis Park, MN)
Primary Examiner: Gary Jackson
Assistant Examiner: Zahed Kabir
Application Number: 16/371,612
International Classification: A61N 1/05 (20060101); A61B 5/00 (20060101); A61N 1/362 (20060101); A61M 25/00 (20060101); A61N 1/375 (20060101);