Patents by Inventor Ryan Christopher GARIEPY

Ryan Christopher GARIEPY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11144051
    Abstract: A system for remote viewing and control of self-driving vehicles includes: an execution subsystem for deployment at an execution location containing a self-driving vehicle. The execution subsystem includes: a capture assembly to capture multimedia data depicting the execution location, and a server to receive the multimedia data and transmit the multimedia data for presentation at an operator location remote from the execution location. The server relays operational commands and operational status data between the self-driving vehicle and the operator location. The system includes an operator subsystem for deployment at the operator location, including: a display assembly, and a computing device to: (a) establish a connection with the server; (b) receive the multimedia data from the server and control the display assembly to present the multimedia data; and (c) receive control commands and transmit the control commands to the server for execution by the self-driving vehicle.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 12, 2021
    Assignee: Clearpath Robotics Inc.
    Inventor: Ryan Christopher Gariepy
  • Patent number: 11142118
    Abstract: An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: October 12, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Simon Drexler, Matthew Allen Rendall, Ryan Christopher Gariepy, Mike Hanuschik, Paul Mohr
  • Publication number: 20210311475
    Abstract: Systems, methods and apparatus are provided for handling operational constraints for unmanned vehicles. The system includes: a plurality of mobile unmanned vehicles for deployment in an environment; a computing device connected to the plurality of unmanned vehicles via a network, the computing device storing, in a memory, a plurality of operational constraints; each operational constraint including (i) a type identifier, (ii) an indication of a region of the environment, and (iii) a property defining a constraint on the operation of the unmanned vehicles within the region. The computing device is configured to: receive a request from one of the mobile unmanned vehicles, the request identifying an operational constraint; responsive to receiving the request, retrieve an operational constraint from the memory based on the request; and send the retrieved operational constraint to the one of the mobile unmanned vehicles.
    Type: Application
    Filed: February 25, 2021
    Publication date: October 7, 2021
    Inventors: Ryan Christopher Gariepy, Alex Bencz, Andrew Clifford Blakey, Shahab Kaynama, James Servos
  • Patent number: 11132898
    Abstract: Systems and methods for self-driving vehicle traffic management are disclosed. The system comprises one or more self-driving vehicles. One or more vehicles has a sensor system, a control system, and a drive system. The control system is configured to determine a current position and an intent position associated with itself, and to receive a current position and intent decision associated with a neighbor vehicle. The control system then determines a current spacing and relative spacing between itself and the neighbor vehicle. Based on the current and intent positions, the current spacing, and the relative spacing, the control system determines that the vehicle should yield to the neighbor vehicle, and sends a yield signal to the drive system in order to cause the vehicle to yield to the neighbor vehicle.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 28, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Smriti Chopra, Ryan Christopher Gariepy
  • Publication number: 20210286351
    Abstract: Systems and methods of unmanned vehicles having self-calibrating sensors and actuators are provided. The unmanned vehicle comprises a communication interface and a processor for controlling a propulsion system of the vehicle and receiving sensor data from one or more sensors of the vehicle. The processor is configured to operate in a guided calibration mode by controlling the propulsion system according to commands received from an external guided control system, while processing the sensor data to determine a degree of certainty on a calibration the sensor data and a position of the vehicle. The processor determines that the degree of certainty is above a threshold value associated with safe operation of the propulsion system in an autonomous calibration mode, and subsequently switch operation of the propulsion system to the autonomous calibration mode based on the determination that the degree of certainty is above the threshold value.
    Type: Application
    Filed: April 1, 2021
    Publication date: September 16, 2021
    Inventors: Ryan Christopher GARIEPY, Kareem SHEHATA, Prasenjit MUKHERJEE, Anthony TOD, Teyvonia THOMAS, Yan MA
  • Patent number: 11119476
    Abstract: Systems and methods for monitoring a self-driving vehicle are presented. The system comprises a camera, a processor, a communications transceiver, a computer-readable medium, and a display device. The processor can be configured to receive an image of a self-driving vehicle from the camera, and vehicle information from the self-driving vehicle. A graphic comprising the image of the self-driving vehicle and a visual representation of the vehicle information is then displayed on the display device. The vehicle information may comprise any or all of vehicle-status information, vehicle-mission information, vehicle-metric information, and vehicle-environment information.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 14, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Anthony William Tod, Ryan Christopher Gariepy
  • Publication number: 20210279670
    Abstract: Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 9, 2021
    Inventors: Ryan Christopher GARIEPY, Simon DREXLER, Roydyn CLAYTON, Sam Adrian JENKINS, Pavel BOVBEL, Yvan Geoffrey RODRIGUES
  • Patent number: 11097736
    Abstract: Methods and systems are provided for traction detection and control of a self-driving vehicle. The self-driving vehicle has drive motors that drive drive-wheels according to a drive-motor speed. Traction detection and control can be obtained by measuring the vehicle speed with a sensor such as a LiDAR or video camera, and measuring the wheel speed of the drive wheels with a sensor such as a rotary encoder. The difference between the measured vehicle speed and the measured wheel speeds can be used to determine if a loss of traction has occurred in any of the wheels. If a loss of traction is detected, then a recovery strategy can be selected from a list of recovery strategies in order to reduce the effects of the loss of traction.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 24, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Shahab Kaynama
  • Patent number: 11054840
    Abstract: There is provided a driver-support system for use with a human-operated material-transport vehicle, and methods for using the same. The system has at least one sensor, a human-vehicle interface, and a transceiver for communicating with a fleet-management system. The system also has a processor that is configured to provide a mapping application and a localization application based on information received from the sensor. The mapping application and localization application may be provided in a single localization-and-mapping (“SLAM”) application, which may obtain input from the sensor, for example, when the sensor is an optical sensor such as a LiDAR or video camera.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: July 6, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Simon Drexler, Roydyn Clayton, Shahab Kaynama
  • Publication number: 20210141392
    Abstract: Systems and methods for flexible conveyance in an assembly-line or manufacturing process are disclosed. A fleet of self-driving vehicles and a fleet-management system can be used to convey workpieces through a sequence of workstations at which operations are performed in order to produce a finished assembly. An assembly can be transported to a first workstation using a self-driving vehicle, where an operation is performed on the assembly. Subsequently, the assembly can be transported to a second workstation using the self-driving vehicle. The operation can be performed on the assembly while it is being conveyed by the self-driving vehicle.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Ryan Christopher GARIEPY, Andrew DOBSON, Nir RIKOVITCH, William John Alexander TORRENS, Roydyn CLAYTON
  • Patent number: 11001446
    Abstract: Apparatus, systems and methods for providing smart pick-up and drop-off are presented. The apparatus comprises at least one vertical support member and at least one storage shelf supported by the at least one vertical support member. A payload transfer surface, supported by the vertical support members, is located below the lowest storage shelf. The payload transfer surface has an access channel so that a self-driving material-transport vehicle equipped with a lift appliance can pick up or drop off a payload on the payload transfer surface. A sensor associated with the payload transfer surface senses the presence or absence of a payload on the payload transfer surface, and sends a signal to a fleet-management system in communication with the self-driving material-transport vehicle.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: May 11, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Daniel Cantor, David William Bergsma, Kenneth James Sherk, Matthew Kingston Bedard, Matthew Allen Rendall, Ryan Christopher Gariepy
  • Patent number: 10990093
    Abstract: Systems and methods of unmanned vehicles having self-calibrating sensors and actuators are provided. The unmanned vehicle comprises a communication interface and a processor for controlling a propulsion system of the vehicle and receiving sensor data from one or more sensors of the vehicle. The processor is configured to operate in a guided calibration mode by controlling the propulsion system according to commands received from an external guided control system, while processing the sensor data to determine a degree of certainty on a calibration the sensor data and a position of the vehicle. The processor determines that the degree of certainty is above a threshold value associated with safe operation of the propulsion system in an autonomous calibration mode, and subsequently switch operation of the propulsion system to the autonomous calibration mode based on the determination that the degree of certainty is above the threshold value.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 27, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Ryan Christopher Gariepy, Kareem Shehata, Prasenjit Mukherjee, Anthony Tod, Teyvonia Thomas, Yan Ma
  • Patent number: 10990919
    Abstract: Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: April 27, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Simon Drexler, Roydyn Clayton, Sam Adrian Jenkins, Pavel Bovbel, Yvan Geoffrey Rodrigues
  • Patent number: 10990100
    Abstract: Systems, methods and apparatus are provided for handling operational constraints for unmanned vehicles. The system includes: a plurality of mobile unmanned vehicles for deployment in an environment; a computing device connected to the plurality of unmanned vehicles via a network, the computing device storing, in a memory, a plurality of operational constraints; each operational constraint including (i) a type identifier, (ii) an indication of a region of the environment, and (iii) a property defining a constraint on the operation of the unmanned vehicles within the region. The computing device is configured to: receive a request from one of the mobile unmanned vehicles, the request identifying an operational constraint; responsive to receiving the request, retrieve an operational constraint from the memory based on the request; and send the retrieved operational constraint to the one of the mobile unmanned vehicles.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 27, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Alex Bencz, Andrew Clifford Blakey, Shahab Kaynama, James Servos
  • Patent number: 10974585
    Abstract: A mobile platform for materials transport is provided. The platform includes a pair of suspension devices that in turn include a pair of rocker beams which can be rotated between two positions: a first position where central wheels attached thereto can be used to drive the platform; and a second position where the central wheels are retracted and the platform can be rolled on end wheels without the friction of the central wheels, and an associated drive system, impeding movement of the platform. Furthermore, data from sensors and/or load cells can be used to control movement of the platform; specifically shifts in load distribution and/or sensed forces at the suspension devices can indicate that a load (and/or materials) has shifted and/or is shifting and movement of the platform is adjusted accordingly, for example to prevent the platform and/or the load (and/or materials) from tipping.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: April 13, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Matthew Lord, Roydyn Clayton, Michael Irvine, Ryan Christopher Gariepy
  • Publication number: 20210087031
    Abstract: The various embodiments described herein generally relate to an autonomous material transport vehicle, and systems and methods for operating an autonomous material transport vehicle. The autonomous material transport vehicle comprises: a sensing system operable to monitor an environment of the vehicle; a drive system for operating the vehicle; a processor operable to: receive a location of a load; initiate the drive system to navigate the vehicle to the location; following initiation of the drive system, operate the sensing system to monitor for one or more objects within a detection range; and in response to the sensing system detecting the one or more objects within the detection range, determine whether the load is within the detection range; and when the load is within the detection range, operate the drive system to position the vehicle for transporting the load, otherwise, determine a collision avoidance operation to avoid the one or more objects.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 25, 2021
    Inventors: Nolan Lunscher, Enrique Fernandez Perdomo, James Servos, Ryan Christopher Gariepy
  • Patent number: 10955845
    Abstract: Systems, methods and apparatus are provided for handling operational constraints for unmanned vehicles. The system includes: a plurality of mobile unmanned vehicles for deployment in an environment; a computing device connected to the plurality of unmanned vehicles via a network, the computing device storing, in a memory, a plurality of operational constraints; each operational constraint including (i) a type identifier, (ii) an indication of a region of the environment, and (iii) a property defining a constraint on the operation of the unmanned vehicles within the region. The computing device is configured to: receive a request from one of the mobile unmanned vehicles, the request identifying an operational constraint; responsive to receiving the request, retrieve an operational constraint from the memory based on the request; and send the retrieved operational constraint to the one of the mobile unmanned vehicles.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: March 23, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Alex Bencz, Andrew Clifford Blakey, Shahab Kaynama, James Servos
  • Publication number: 20210081886
    Abstract: Systems and methods for autonomous provision replenishment are disclosed. Parts used in a manufacturing process are stored in an intermediate stock queue. When the parts are consumed by the manufacturing process and the number of parts in the queue falls below a threshold, a provision-replenishment signal is generated. One or more self-driving material-transport vehicles, a fleet-management system, and a provision-notification device.
    Type: Application
    Filed: November 27, 2020
    Publication date: March 18, 2021
    Inventors: Ryan Christopher Gariepy, Simon Drexler, Roydyn Clayton
  • Publication number: 20210061323
    Abstract: A system for path control for a mobile unmanned vehicle in an environment is provided. The system includes: a sensor connected to the mobile unmanned vehicle; the mobile unmanned vehicle configured to initiate a first fail-safe routine responsive to detection of an object in a first sensor region adjacent to the sensor; and a processor connected to the mobile unmanned vehicle. The processor is configured to: generate a current path based on a map of the environment; based on the current path, issue velocity commands to cause the mobile unmanned vehicle to execute the current path; responsive to detection of an obstacle in a second sensor region, initiate a second fail-safe routine in the mobile unmanned vehicle to avoid entry of the obstacle into the first sensor region and initiation of the first fail-safe routine.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 4, 2021
    Inventors: Ryan Christopher Gariepy, Alex Bencz, Yan Ma, Michael Irvine, Shahab Kaynama, James Servos, Peiyi Chen
  • Patent number: 10928835
    Abstract: Systems and methods for flexible conveyance in an assembly-line or manufacturing process are disclosed. A fleet of self-driving vehicles and a fleet-management system can be used to convey workpieces through a sequence of workstations at which operations are performed in order to produce a finished assembly. An assembly can be transported to a first workstation using a self-driving vehicle, where an operation is performed on the assembly. Subsequently, the assembly can be transported to a second workstation using the self-driving vehicle. The operation can be performed on the assembly while it is being conveyed by the self-driving vehicle.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: February 23, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Andrew Dobson, Nir Rikovitch, William John Alexander Torrens, Roydyn Clayton