Patents by Inventor Ryan Christopher GARIEPY

Ryan Christopher GARIEPY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200122328
    Abstract: Systems and methods for process tending with a robot arm are presented. The system comprises a robot arm and robot arm control system mounted on a self-driving vehicle, and a server in communication with the vehicle and/or robot arm control system. The vehicle has a vehicle control system for storing a map and receiving a waypoint based on a process location provided by the server. The robot arm control system stores at programs that is executable by the robot arm. The vehicle control system autonomously navigates the vehicle to the waypoint based on the map, and the robot arm control system selects a target program from the stored programs based on the process location and/or a process identifier.
    Type: Application
    Filed: September 5, 2019
    Publication date: April 23, 2020
    Inventors: Daniel Cantor, Ryan Christopher Gariepy, Roydyn Clayton, Yvan Geoffrey Rodrigues, Anthony William Tod, Bryce William Vondervoort
  • Patent number: 10618401
    Abstract: A mobile platform for materials transport is provided. The platform includes a pair of suspension devices that in turn include a pair of rocker beams which can be rotated between two positions: a first position where central wheels attached thereto can be used to drive the platform; and a second position where the central wheels are retracted and the platform can be rolled on end wheels without the friction of the central wheels, and an associated drive system, impeding movement of the platform. Furthermore, data from sensors and/or load cells can be used to control movement of the platform; specifically shifts in load distribution and/or sensed forces at the suspension devices can indicate that a load (and/or materials) has shifted and/or is shifting and movement of the platform is adjusted accordingly, for example to prevent the platform and/or the load (and/or materials) from tipping.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 14, 2020
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Matthew Lord, Roydyn Clayton, Michael Irvine, Ryan Christopher Gariepy
  • Publication number: 20200084164
    Abstract: A system, apparatus and method for automatic environmental data collection and analysis are provided, including a server comprising: a processor and a communication interface, the processor configured to: receive, using the communication interface, a geographic survey request from a first computing device; translate the geographic survey request into mission data for collecting geographic survey data; transmit, using the communication interface, the mission data to a second computing device associated with a geographic survey entity; receive, using the communication interface, the geographic survey data collected by the geographic survey entity using the mission data; analyze the geographic survey data to generate processed geographic survey data; and, transmit, using the communication interface, the processed geographic survey data to the first computing device.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 12, 2020
    Applicant: Clearpath Robotics Inc.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Andrew Clifford Blakey
  • Patent number: 10585440
    Abstract: There is provided a driver-support system for use with a human-operated material-transport vehicle, and methods for using the same. The system has at least one sensor, a human-vehicle interface, and a transceiver for communicating with a fleet-management system. The system also has a processor that is configured to provide a mapping application and a localization application based on information received from the sensor. The mapping application and localization application may be provided in a single localization-and-mapping (“SLAM”) application, which may obtain input from the sensor, for example, when the sensor is an optical sensor such as a LiDAR or video camera.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: March 10, 2020
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Simon Drexler, Roydyn Clayton, Shahab Kaynama
  • Publication number: 20190366867
    Abstract: There is provided an electrically-powered material-transport vehicle having a vehicle-charging contact on one side of the vehicle, and a second vehicle-charging contact on the opposite side of the vehicle. The vehicle has a load-bearing cap that covers the top of the vehicle, and a cap elevator for raising and lowering the cap. The cap can be raised and lowered to a transit position, a payload-engagement position, a charging position, and a maintenance position. In the transit position and payload-engagement position, the cap covers the vehicle-charging contacts so that they are not exposed. In the charging position, the cap is raised so that the vehicle-charging contacts are exposed. The vehicle can enter a charging-dock with the cap in the charging position in order to recharge the vehicle's battery.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 5, 2019
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, John Duncan Edwards, Aaron Wilson, Simon Drexler, Scott Waters, Aaron Gerlach, Mark Podbevsek, Michael Irvine, Vaibhav Kumar Mehta, Peiyi Chen, Amritpal Saini, Robert Dam, Michael O'Driscoll, Arsalan Alim
  • Publication number: 20190360835
    Abstract: Systems and methods for a stand-alone self-driving material-transport vehicle are provided. A method includes: displaying a graphical map on a graphical user-interface device based on a map stored in a storage medium of the vehicle, receiving a navigation instruction based on the graphical map, and navigating the vehicle based on the navigation instruction. As the vehicle navigates, it senses features of an industrial facility using its sensor system, and locates the features relative to the map. Subsequently, the vehicle stores the updated map including the feature on the vehicle's storage medium. The map can then be shared with other vehicles or a fleet-management system.
    Type: Application
    Filed: August 13, 2019
    Publication date: November 28, 2019
    Inventors: Ryan Christopher Gariepy, Jason Scharlach, Andrew Blakey, Simon Drexler, James Dustin Servos
  • Patent number: 10462076
    Abstract: A system, apparatus and method for automatic environmental data collection and analysis are provided, including a server comprising: a processor and a communication interface, the processor configured to: receive, using the communication interface, a geographic survey request from a first computing device; translate the geographic survey request into mission data for collecting geographic survey data; transmit, using the communication interface, the mission data to a second computing device associated with a geographic survey entity; receive, using the communication interface, the geographic survey data collected by the geographic survey entity using the mission data; analyze the geographic survey data to generate processed geographic survey data; and, transmit, using the communication interface, the processed geographic survey data to the first computing device.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: October 29, 2019
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Andrew Clifford Blakey
  • Publication number: 20190270402
    Abstract: An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 5, 2019
    Inventors: Simon Drexler, Matthew Allen Rendall, Ryan Christopher Gariepy, Mike Hanuschik, Paul Mohr
  • Publication number: 20190265704
    Abstract: Systems, methods and apparatus are provided for handling operational constraints for unmanned vehicles. The system includes: a plurality of mobile unmanned vehicles for deployment in an environment; a computing device connected to the plurality of unmanned vehicles via a network, the computing device storing, in a memory, a plurality of operational constraints; each operational constraint including (i) a type identifier, (ii) an indication of a region of the environment, and (iii) a property defining a constraint on the operation of the unmanned vehicles within the region. The computing device is configured to: receive a request from one of the mobile unmanned vehicles, the request identifying an operational constraint; responsive to receiving the request, retrieve an operational constraint from the memory based on the request; and send the retrieved operational constraint to the one of the mobile unmanned vehicles.
    Type: Application
    Filed: March 1, 2019
    Publication date: August 29, 2019
    Inventors: Ryan Christopher Gariepy, Alex Bencz, Andrew Clifford Blakey, Shahab Kaynama, James Servos
  • Publication number: 20190263250
    Abstract: A mobile platform for materials transport is provided. The platform includes a pair of suspension devices that in turn include a pair of rocker beams which can be rotated between two positions: a first position where central wheels attached thereto can be used to drive the platform; and a second position where the central wheels are retracted and the platform can be rolled on end wheels without the friction of the central wheels, and an associated drive system, impeding movement of the platform. Furthermore, data from sensors and/or load cells can be used to control movement of the platform; specifically shifts in load distribution and/or sensed forces at the suspension devices can indicate that a load (and/or materials) has shifted and/or is shifting and movement of the platform is adjusted accordingly, for example to prevent the platform and/or the load (and/or materials) from tipping.
    Type: Application
    Filed: March 1, 2019
    Publication date: August 29, 2019
    Inventors: Matthew Lord, Roydyn Clayton, Michael Irvine, Ryan Christopher Gariepy
  • Publication number: 20190265698
    Abstract: Systems and methods for tele-present recovery of self-driving vehicles are disclosed. The system comprises one or more self-driving vehicles, a server, and a master-assistance device. The vehicle operates in a full-autonomous mode until a problem is encountered, triggering a vehicle status associated with a master-assisted intervention. A master-assisted intervention request and associated environment state information are sent from the server to the master-assistance device. A human operator of the master-assisted intervention device provides input indicative of operational commands for the vehicle. The operational commands are received by the vehicle, and the vehicle is operated in a semi-autonomous mode based on the operational commands. When the problem has been resolved, an assistance complete message is sent to the vehicle, and the vehicle returns to operating in the full-autonomous mode.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Inventors: Anthony William TOD, David Andrew BROWN, Ryan Christopher GARIEPY, Matthew Allen RENDALL
  • Publication number: 20190265693
    Abstract: A system for remote viewing and control of self-driving vehicles includes: an execution subsystem for deployment at an execution location containing a self-driving vehicle. The execution subsystem includes: a capture assembly to capture multimedia data depicting the execution location, and a server to receive the multimedia data and transmit the multimedia data for presentation at an operator location remote from the execution location. The server relays operational commands and operational status data between the self-driving vehicle and the operator location. The system includes an operator subsystem for deployment at the operator location, including: a display assembly, and a computing device to: (a) establish a connection with the server; (b) receive the multimedia data from the server and control the display assembly to present the multimedia data; and (c) receive control commands and transmit the control commands to the server for execution by the self-driving vehicle.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Inventor: Ryan Christopher GARIEPY
  • Publication number: 20190249992
    Abstract: Systems and methods for electronically mapping a facility are presented. The method comprises obtaining a CAD file that includes graphical representations of a facility. An occupancy-map image is generated based on the CAD file. A sensor, such as a sensor on a self-driving vehicle, is used to detect a sensed feature within the facility. Based on the sensed feature, the occupancy-map image can be updated, since the sensed feature was not one of the known features in the CAD file prior to the sensed feature being detected by the sensor.
    Type: Application
    Filed: June 5, 2018
    Publication date: August 15, 2019
    Inventors: Adel FAKIH, Ryan Christopher GARIEPY
  • Publication number: 20190250603
    Abstract: Systems and methods for monitoring a self-driving vehicle are presented. The system comprises a camera, a processor, a communications transceiver, a computer-readable medium, and a display device. The processor can be configured to receive an image of a self-driving vehicle from the camera, and vehicle information from the self-driving vehicle. A graphic comprising the image of the self-driving vehicle and a visual representation of the vehicle information is then displayed on the display device. The vehicle information may comprise any or all of vehicle-status information, vehicle-mission information, vehicle-metric information, and vehicle-environment information.
    Type: Application
    Filed: July 25, 2018
    Publication date: August 15, 2019
    Inventors: Anthony William TOD, Ryan Christopher GARIEPY
  • Publication number: 20190253957
    Abstract: Systems and methods for WiFi mapping an industrial facility are disclosed. The system comprises a self-driving vehicle having a WiFi transceiver. The self-driving vehicle communicates with a fleet-management using the WiFi transceiver, via a WiFi access point. The self-driving vehicle receives a mission from the fleet-management system, and moves to a destination location based on the mission, using autonomous navigation. While executing the mission, the self-driving vehicle simultaneously measures the received signal strength indication of the WiFi access point and other WiFi access points in the facility, and stores the received signal strength indication in association with the location at which the received signal strength indication was measured.
    Type: Application
    Filed: June 26, 2018
    Publication date: August 15, 2019
    Inventors: Anthony William TOD, Ryan Christopher GARIEPY, Ivor WANDERS, Andrew Clifford BLAKEY
  • Publication number: 20190243384
    Abstract: Systems and methods for providing inter-vehicle communication are disclosed. The method includes receiving, at a fleet management system, operating data from one or more self-driving vehicles via a communication network, and operating the fleet management system to determine a characteristic of a set of vehicles of one or more self-driving vehicles satisfies at least one communication condition. In response to determining the set of vehicles satisfies the at least one communication condition, the fleet management system can operate to select a stored data portion from a manager storage unit based at least on the characteristic of the set of vehicles; and transmit the data portion to the set of vehicles via the communication network. A method of providing inter-vehicle communication between one or more self-driving vehicles is also disclosed.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 8, 2019
    Inventors: Smriti CHOPRA, Ryan Christopher GARIEPY, Shahab KAYNAMA, Pavel BOVBEL, Andrei Petru IONESCU, Jason Mercer
  • Publication number: 20190225233
    Abstract: Systems and methods for monitoring a fleet of self-driving vehicles are disclosed. The system comprises one or more self-driving vehicles having at least one sensor for collecting current state information, a fleet-management system, and computer-readable media for storing reference data. The method comprises autonomously navigating a self-driving vehicle in an environment, collecting current state information using the vehicle's sensor, comparing the current state information with the reference data, identifying outlier data in the current state information, and generating an alert based on the outlier data. A notification based on the alert may be sent to one or more monitoring devices according to the type and severity of the outlier.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 25, 2019
    Inventors: Anthony William TOD, David Andrew BROWN, Guillame AUTRAN, Ryan Christopher GARIEPY, Bryan WEBB, Matthew Allen RENDALL
  • Publication number: 20190228597
    Abstract: Systems and methods for measuring a fleet of self-driving vehicles are disclosed. The system comprises one or more self-driving vehicles, non-transitory computer-readable media in communication with the vehicles, a fleet-management system in communication with the media and vehicles, and a server in communication with the media. The fleet-management system is configured to store vehicle status records comprising a vehicle status pertaining to each of the one or more vehicles, and a timestamp in a vehicle status log on the media. The server has a processor that is configured to generate a fleet-performance report based on the vehicle status log.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 25, 2019
    Inventors: David Andrew BROWN, Anthony William TOD, Guillaume AUTRAN, Roydyn CLAYTON, Ryan Christopher GARIEPY
  • Publication number: 20190186923
    Abstract: Systems and methods for updating an electronic map of a facility are disclosed. The electronic map includes a set of map nodes. Each map node has a stored image data associated with a position within the facility. The method includes collecting image data at a current position of a self-driving material-transport vehicle; searching the electronic map for at least one of a map node associated with the current position and one or more neighboring map nodes within a neighbor threshold to the current position; comparing the collected image data with the stored image data of the at least one of the map node and the one or more neighboring map nodes to determine a dissimilarity level. The electronic map may be updated based at least on the collected image data and the dissimilarity level. The image data represents one or more features observable from the current position.
    Type: Application
    Filed: November 9, 2018
    Publication date: June 20, 2019
    Inventors: James Dustin SERVOS, Ryan Christopher GARIEPY
  • Publication number: 20190129425
    Abstract: Systems and methods for operating robotic equipment in a controlled zone are presented. The system comprises one or more self-driving material-transport vehicles having at least one sensor, non-transitory computer-readable media, and a processor in communication with the at least one sensor and media. The media stores computer instructions that configure the processor to move the vehicle towards the controlled zone in a normal mode of operation, capture environmental data associated with the controlled zone using the at least one sensor, determine environmental-change data based on comparing the captured environmental data with known-good environmental data, and operating the vehicle in a safe mode of operation based on the environmental-change data.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 2, 2019
    Inventors: Simon DREXLER, Ryan Christopher GARIEPY