Patents by Inventor Ryan KEECH

Ryan KEECH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210407996
    Abstract: Gate-all-around integrated circuit structures having strained dual nanowire/nanoribbon channel structures, and methods of fabricating gate-all-around integrated circuit structures having strained dual nanowire/nanoribbon channel structures, are described. For example, an integrated circuit structure includes a first vertical arrangement of nanowires above a substrate. Individual ones of the first vertical arrangement of nanowires are biaxially tensilely strained. The integrated circuit structure also includes a second vertical arrangement of nanowires above the substrate. Individual ones of the second vertical arrangement of nanowires are biaxially compressively strained. The individual ones of the second vertical arrangement of nanowires are laterally staggered with the individual ones of the first vertical arrangement of nanowires.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Ashish AGRAWAL, Brennen MUELLER, Jack T. KAVALIEROS, Jessica TORRES, Kimin JUN, Siddharth CHOUKSEY, Willy RACHMADY, Koustav GANGULY, Ryan KEECH, Matthew V. METZ, Anand S. MURTHY
  • Publication number: 20210408246
    Abstract: Embodiments disclosed herein include transistor devices and methods of making such devices. In an embodiment, the transistor device comprises a stack of semiconductor channels with a first source/drain region on a first end of the semiconductor channels and a second source/drain region on a second end of the semiconductor channels. In an embodiment, the first source/drain region and the second source/drain region have a top surface and a bottom surface. In an embodiment, the transistor device further comprises a first source/drain contact electrically coupled to the top surface of the first source/drain region, and a second source/drain contact electrically coupled to the bottom surface of the second source/drain region. In an embodiment, the second source/drain contact is separated from the second source/drain region by an interfacial layer.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: Koustav GANGULY, Ryan KEECH, Subrina RAFIQUE, Glenn A. GLASS, Anand S. MURTHY, Ehren MANNEBACH, Mauro KOBRINSKY, Gilbert DEWEY
  • Publication number: 20210408284
    Abstract: Gate-all-around integrated circuit structures having strained source or drain structures on a gate dielectric layer, and methods of fabricating gate-all-around integrated circuit structures having strained source or drain structures on a gate dielectric layer, are described. For example, an integrated circuit structure includes an insulator layer above a substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator layer. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and on the insulator layer. A gate stack is surrounding a channel region of the vertical arrangement of horizontal semiconductor nanowires. The gate stack includes a high-k dielectric layer continuous with and having a same composition as the insulator layer.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: Ashish AGRAWAL, Anand S. MURTHY, Jack T. KAVALIEROS, Koustav GANGULY, Ryan KEECH, Siddharth CHOUKSEY, Willy RACHMADY
  • Publication number: 20210408283
    Abstract: Gate-all-around integrated circuit structures having strained source or drain structures on an insulator layer, and methods of fabricating gate-all-around integrated circuit structures having strained source or drain structures on an insulator layer, are described. For example, an integrated circuit structure includes an insulator layer above a substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator layer. A gate stack is surrounding a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is on the insulator layer. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and on the insulator layer. Each of the pair of epitaxial source or drain structures has a compressed or an expanded lattice.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: Ashish AGRAWAL, Anand S. MURTHY, Cory BOMBERGER, Jack T. KAVALIEROS, Koustav GANGULY, Ryan KEECH, Siddharth CHOUKSEY, Susmita GHOSE, Willy RACHMADY
  • Patent number: 11164785
    Abstract: A monolithic three-dimensional integrated circuit may include multiple transistor levels separated by one or more levels of metallization. An upper level transistor structure may include monocrystalline source and drain material epitaxially grown from a monocrystalline channel material at a temperature low enough to avoid degradation of a lower level transistor structure and/or degradation of one or more low-k dielectric materials between the transistor levels. A highly conductive n-type silicon source and drain material may be selectively deposited at low temperatures with a high pressure CVD process. Multiple crystals of source drain material arranged in a vertically stacked multi-channel transistor structure may be contacted by a single contact metallization.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: November 2, 2021
    Assignee: Intel Corporation
    Inventors: Ashish Agrawal, Gilbert Dewey, Cheng-Ying Huang, Willy Rachmady, Anand Murthy, Ryan Keech, Cory Bomberger
  • Publication number: 20210202476
    Abstract: A monolithic three-dimensional integrated circuit may include multiple transistor levels separated by one or more levels of metallization. An upper level transistor structure may include a monocrystalline channel material over a bottom gate stack. The channel material and the gate stack materials may be formed on a donor substrate at any suitable temperature, and subsequently transferred from the donor substrate to a host substrate that includes lower-level circuitry. The upper-level transistor may be patterned from the transferred layers so that the gate electrode includes one or more bonding layers. Source and drain material may be patterned from a source and drain material layer that was transferred from the donor substrate along with the channel material, or source and drain material may be grown at low temperatures from the transferred channel material.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Inventors: Cheng-Ying Huang, Gilbert Dewey, Ashish Agrawal, Kimin Jun, Willy Rachmady, Zachary Geiger, Cory Bomberger, Ryan Keech, Koustav Ganguly, Anand Murthy, Jack Kavalieros
  • Publication number: 20210202378
    Abstract: A device includes a device level having a metallization structure coupled to a semiconductor device and a transistor above the device level. The transistor has a body including a single crystal group III-V or group IV semiconductor material, a source structure on a first portion of the body and a drain structure on a second portion of the body, where the source structure is separate from the drain structure. The transistor further includes a gate structure including a first gate structure portion in a recess in the body and a second gate structure portion between the source structure and the drain structure. A source contact is coupled with the source structure and a drain contact is coupled with the drain structure. The source contact is in contact with the metallization structure in the device level.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Inventors: Gilbert Dewey, Ryan Keech, Cory Bomberger, Cheng-Ying Huang, Ashish Agrawal, Willy Rachmady, Anand Murthy
  • Publication number: 20210202319
    Abstract: A monolithic three-dimensional integrated circuit may include multiple transistor levels separated by one or more levels of metallization. An upper level transistor structure may include monocrystalline source and drain material epitaxially grown from a monocrystalline channel material at a temperature low enough to avoid degradation of a lower level transistor structure and/or degradation of one or more low-k dielectric materials between the transistor levels. A highly conductive n-type silicon source and drain material may be selectively deposited at low temperatures with a high pressure CVD process. Multiple crystals of source drain material arranged in a vertically stacked multi-channel transistor structure may be contacted by a single contact metallization.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Applicant: Intel Corporation
    Inventors: Ashish Agrawal, Gilbert Dewey, Cheng-Ying Huang, Willy Rachmady, Anand Murthy, Ryan Keech, Cory Bomberger
  • Publication number: 20210091181
    Abstract: Integrated circuit structures having source or drain structures with abrupt dopant profiles are described. In an example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. The first and second epitaxial source or drain structures include silicon, phosphorous and arsenic, with an atomic concentration of phosphorous substantially the same as an atomic concentration of arsenic.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 25, 2021
    Inventors: Ryan KEECH, Anand S. MURTHY, Nicholas G. MINUTILLO, Suresh VISHWANATH, Mohammad HASAN, Biswajeet GUHA, Subrina RAFIQUE
  • Publication number: 20200312958
    Abstract: Integrated circuit structures having source or drain structures with phosphorous and arsenic co-dopants are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. The first and second source or drain structures include silicon, phosphorous and arsenic, with an atomic concentration of phosphorous substantially the same as an atomic concentration of arsenic.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Inventors: Anand MURTHY, Ryan KEECH, Nicholas G. MINUTILLO, Suresh VISHWANATH
  • Publication number: 20200313001
    Abstract: Integrated circuit structures having source or drain structures and germanium N-channels are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion, the upper fin portion including germanium. A gate stack is over the upper fin portion of the fin. A first source or drain structure includes an epitaxial structure embedded in the fin at a first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at a second side of the gate stack. Each epitaxial structure includes a first semiconductor layer in contact with the upper fin portion, and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer comprises silicon, germanium and phosphorous, and the second semiconductor layer comprises silicon and phosphorous.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Ryan KEECH, Benjamin CHU-KUNG, Subrina RAFIQUE, Devin MERRILL, Ashish AGRAWAL, Harold KENNEL, Yang CAO, Dipanjan BASU, Jessica TORRES, Anand MURTHY
  • Publication number: 20200312842
    Abstract: Integrated circuit structures having source or drain structures with vertical trenches are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. The epitaxial structures of the first and second source or drain structures have a vertical trench centered therein. The first and second source or drain structures include silicon and a Group V dopant impurity.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Ryan KEECH, Nicholas MINUTILLO, Anand MURTHY, Aaron BUDREVICH, Peter WELLS
  • Publication number: 20200105754
    Abstract: Techniques are disclosed for providing an integrated circuit structure having NMOS transistors including an arsenic-doped interface layer between epitaxially grown source/drain regions and a channel region. The arsenic-doped interface layer may include, for example, arsenic-doped silicon (Si:As) having arsenic concentrations in a range of about 1E20 atoms per cm3 to about 5E21 atoms per cm3. The interface layer may have a relatively uniform thickness in a range of about 0.5 nm to full fill where the entire source/drain region is composed of the Si:As. In cases where the arsenic-doped interface layer only partially fills the source/drain regions, another n-type doped semiconductor material can fill remainder (e.g., phosphorus-doped III-V compound or silicon).
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Applicant: INTEL CORPORATION
    Inventors: Anand Murthy, Ryan Keech, Nicholas G. Minutillo, Ritesh Jhaveri
  • Publication number: 20200098921
    Abstract: Embodiments include transistor devices and a method of forming the transistor devices. A transistor device includes a first dielectric over a substrate, and vias on a first metal layer, where the first metal layer is on an etch stop layer that is on the first dielectric. The transistor device also includes a second dielectric over the first metal layer, vias, and etch stop layer, where the vias include sidewalls, top surfaces, and bottom surfaces, and stacked transistors on the second dielectric and the top surfaces of the vias, where the sidewalls and top surfaces of the vias are positioned within a footprint of the stacked transistors. The stacked transistors include gate electrodes and first and second transistor layers. The first metal layer includes conductive materials including tungsten or cobalt. The footprint may include a bottom surface of the first transistor layer and a bottom surface of the gate electrodes.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Willy RACHMADY, Patrick MORROW, Aaron LILAK, Rishabh MEHANDRU, Cheng-Ying HUANG, Gilbert DEWEY, Kimin JUN, Ryan KEECH, Anh PHAN, Ehren MANNEBACH