Patents by Inventor Ryoichiro Takahashi

Ryoichiro Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140141153
    Abstract: A method of manufacturing a conductive paste comprising steps of: (a) preparing 5 to 60 parts by weight of an organic medium comprising, (i) 2 to 20 parts by weight of an organic polymer; and (ii) 3 to 40 parts by weight of a solvent comprising propylene glycol phenyl ether (PPh) and a dibasic ester (DBE) comprising one or more of dimethyl adipate, dimethyl glutarate or dimethyl succinate, wherein dimethyl succinate is not more than 1 wt % based on the weight of DBE, and wherein the mixing ratio of PPh and DBE is determined according to a desired viscosity at a desired shear rate, and (b) dispersing 40 to 95 parts by weight of a conductive powder into the organic medium.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: RYOICHIRO TAKAHASHI
  • Patent number: 8399148
    Abstract: Provided is a varnish which contains a solvent and an electrode electrolyte for a solid polymer fuel cell electrolyte, which contains a polymer with a structure having a main chain including a polyphenylene, a side chain including a sulfonic acid group and a repeating structural unit as a side chain including a nitrogen-containing heterocyclic group.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 19, 2013
    Assignees: JSR Corporation, Honda Motor Co., Ltd.
    Inventors: Makoto Higami, Igor Rozhanskii, Yoshitaka Yamakawa, Nagayuki Kanaoka, Kaoru Fukuda, Ryoichiro Takahashi, Hiroshi Shinkai
  • Patent number: 8236206
    Abstract: The present invention provides an electrode catalyst layer comprising catalyst particles, an ion exchange resin and a water repellent agent. The water repellent agent contains (A) a fluorine-containing copolymer having a structure unit derived from a polyfluoroalkyl-containing (meth)acrylate and/or (B) a fluorine-containing copolymer having a structural unit represented by derived from a fluorine-containing olefin monomer and a structure unit represented derived from a vinyl ether monomer. The electrode catalyst layer contains 0.1 to 20% by weight of the water repellant agent. The electrode catalyst layer exhibits excellent balance between water retention and drainage in an electrode, good power generation performance under any of low humidity and high humidity conditions, and also excellent durability in power generation.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: August 7, 2012
    Assignees: JSR Corporation, Honda Motor Co., Ltd.
    Inventors: Satoshi Komatsu, Junji Kawai, Toshihiro Ohtsuki, Takanobu Yamamoto, Ryoichiro Takahashi, Kaoru Fukuda, Hiroshi Shinkai
  • Publication number: 20120040271
    Abstract: An electrode electrolyte for a solid polymer electrolyte-type fuel cell contains a polymer, which has a polyphenylene structure as a main chain and both a sulfonic acid group and a nitrogen-containing heterocyclic group as a side chain. A side chain having the nitrogen-containing heterocyclic group has a structure represented by the following general formula (D). where Z represents at least one kind of structures selected from a group consisting of a direct bond, —O— and —S—, Y represents at least one member selected from a group consisting of —CO—, —SO2—, —SO—, —CONH—, —COO—, —(CF2)1— (1 is an integer of 1 to 10) and —C(CF3)2, R20 represents a specified nitrogen-containing heterocyclic group, q represents an integer of 1 to 5 and p represents an integer of 0 to 4.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 16, 2012
    Applicants: Honda Motor Co., Ltd., JSR Corporation
    Inventors: Makoto Higami, Igor Rozhanskii, Yoshitaka Yamakawa, Nagayuki Kanaoka, Kaoru Fukuda, Ryoichiro Takahashi, Hiroshi Shinkai
  • Patent number: 8043762
    Abstract: The present invention provides an electrode paste which comprises catalyst particles, a solvent and an varnish which comprises a solvent and an electrode electrolyte for a solid polymer fuel cell electrolyte, wherein the electrode electrolyte comprises a polymer with a structure having a main chain including a polyphenylene, a side chain including a sulfonic acid group and a repeating structural unit represented by formula (C) as a side chain including a nitrogen-containing heterocyclic group; wherein the structural variables are defined herein.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: October 25, 2011
    Assignees: JSR Corporation, Honda Motor Co., Ltd.
    Inventors: Makoto Higami, Igor Rozhanskii, Yoshitaka Yamakawa, Nagayuki Kanaoka, Kaoru Fukuda, Ryoichiro Takahashi, Hiroshi Shinkai
  • Patent number: 7981566
    Abstract: A membrane electrode assembly for a polymer electrolyte fuel cell has superior power generation characteristics under low humidity conditions and superior starting characteristics under low temperature conditions. In the membrane electrode assembly for a polymer electrolyte fuel cell in which a polymer electrolyte membrane is disposed between a pair of electrodes containing a catalyst, the polymer electrolyte membrane has a polymer segment A having an ion conductive component and a polymer segment B not having an ion conductive component. Furthermore, in the case in which the polymer electrolyte membrane is immersed in water at 90° C. for 30 minutes, absorbed water which exhibits a thawing temperature of from ?30 to 0° C. is in a range from 0.01 to 3.0 g per 1 g of the polymer.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 19, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nagayuki Kanaoka, Naoki Mitsuta, Yuichiro Hama, Ryoichiro Takahashi, Hiroshi Souma, Masaru Iguchi, Yoichi Asano
  • Patent number: 7897291
    Abstract: A membrane electrode assembly including: a solid polymer electrolyte membrane having proton conductivity; a cathode electrode catalyst layer disposed on one side of the solid polymer electrolyte membrane; an anode electrode catalyst layer disposed on the other side of the solid polymer electrolyte membrane; and two gas diffusion layers disposed on a side of the cathode electrode catalyst layer and a side of the anode electrode catalyst layer, respectively; wherein the gas diffusion layer in the anode side is smaller in contact angle to water than the gas diffusion layer in the cathode side. The membrane electrode assembly also includes at least two coating layers different in properties from each other between the gas diffusion layer and the cathode electrode catalyst layer, and at least two coating layers different in properties from each other between the gas diffusion layer and the anode electrode catalyst layer.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: March 1, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Ryoichiro Takahashi, Yoichi Asano, Shintaro Tanaka, Takuma Yamawaki
  • Patent number: 7858263
    Abstract: A solid polymer electrolyte fuel cell comprises: a plurality of electrode structures comprising an anode and a cathode, and polymer electrolyte membrane held between the anode and the cathode, and a plurality of separators for holding the respective electrode structures, with a fuel gas passage for supplying and discharging fuel gas containing hydrogen on a surface opposing the anode; and an oxidant gas passage for supplying and discharging oxidant gas on a surface opposing the cathode. The catalyst layer of the anode comprises a mixture of an ion conductive material, a platinum powder and/or platinum alloy powder and a carbon, the platinum powder and/or platinum alloy powder and carbon substantially exist independently from each other, and the catalyst layer of the cathode comprises a metal support mixture in which the ion conductive material and the electro-conductive material having the supported catalyst material are mixed.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: December 28, 2010
    Assignees: Honda Motor Co., Ltd., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Kaoru Fukuda, Ryoichiro Takahashi, Junji Matsuo, Tomoyuki Tada, Masahiko Inoue, Koichi Matsutani
  • Publication number: 20100294353
    Abstract: An electrode formed on the light-receiving side of photovoltaic cell, comprising conductive component, glass binder, and carbon fiber or metal fiber. By including a carbon fiber and a metal fiber, an electrode having a high aspect ratio can be formed, and improvement of optical conversion efficiency through an increase in light-receiving area can be expected.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: Ryoichiro Takahashi
  • Patent number: 7807314
    Abstract: A membrane electrode assembly that includes a cathode electrode catalyst layer and an anode electrode catalyst layer respectively disposed on one side and the other side of a solid polymer electrolyte membrane, gas diffusion layers disposed respectively on the sides of the electrode catalyst layers; and intermediate layers having pores and disposed respectively between the electrode catalyst layer and the gas diffusion layer and between the electrode catalyst layer and the gas diffusion layer. The volume per unit area and per unit mass of the pores having pore size of 0.1 to 10 ?m in the intermediate layer in the cathode side is larger than that in the intermediate layer in the anode side. The pore volume of the intermediate layer in the cathode side is 1.7 to 4.3 ?l/cm2/mg and that of the intermediate layer in the anode side is 0.5 to 1.4 ?l/cm2/mg.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: October 5, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shintaro Tanaka, Yoichi Asano, Ryoichiro Takahashi, Takuma Yamawaki
  • Publication number: 20100190088
    Abstract: A membrane electrode assembly for a polymer electrolyte fuel cell has superior power generation characteristics under low humidity conditions and superior starting characteristics under low temperature conditions. In the membrane electrode assembly for a polymer electrolyte fuel cell in which a polymer electrolyte membrane is disposed between a pair of electrodes containing a catalyst, the polymer electrolyte membrane has a polymer segment A having an ion conductive component and a polymer segment B not having an ion conductive component. Furthermore, in the case in which the polymer electrolyte membrane is immersed in water at 90° C. for 30 minutes, absorbed water which exhibits a thawing temperature of from ?30 to 0° C. is in a range from 0.01 to 3.0 g per 1 g of the polymer.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Nagayuki KANAOKA, Naoki Mitsuta, Yuichiro Hama, Ryoichiro Takahashi, Hiroshi Souma, Masaru Iguchi, Yoichi Asano
  • Patent number: 7727652
    Abstract: A membrane electrode assembly for a polymer electrolyte fuel cell has superior power generation characteristics under low humidity conditions and superior starting characteristics under low temperature conditions. In the membrane electrode assembly for a polymer electrolyte fuel cell in which a polymer electrolyte membrane is disposed between a pair of electrodes containing a catalyst, the polymer electrolyte membrane has a polymer segment A having an ion conductive component and a polymer segment B not having an ion conductive component. Furthermore, in the case in which the polymer electrolyte membrane is immersed in water at 90° C. for 30 minutes, absorbed water which exhibits a thawing temperature of from ?30 to 0° C. is in a range from 0.01 to 3.0 g per 1 g of the polymer.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: June 1, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nagayuki Kanaoka, Naoki Mitsuta, Yuichiro Hama, Ryoichiro Takahashi, Hiroshi Souma, Masaru Iguchi, Yoichi Asano
  • Patent number: 7638219
    Abstract: Anodes are provided on a porous resin film, a polymer electrolyte membrane is provided on the anodes, and cathodes are provided on the polymer electrolyte membrane to form a plurality of membrane electrode assemblies as power generation units. An electrically conductive member is connected to the cathode of a membrane electrode assembly, and a metal film is electrically connected to the anode of an adjacent membrane electrode assembly. The electrically conductive member has an expansion connected to the metal film. The cathode of the membrane electrode assembly and the anode of the adjacent membrane electrode assembly are electrically connected by the electrically conductive member and the metal film.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: December 29, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takashi Komura, Yoichi Asano, Chikara Iwasawa, Ryoichiro Takahashi, Masaaki Sakano, Keisuke Andou, Kentaro Nagoshi
  • Patent number: 7601454
    Abstract: In a polymer electrolyte fuel cell in which a cathode diffusion layer, a cathode electrode catalyst layer, a polymer electrolyte membrane, an anode electrode catalyst layer, and an anode diffusion layer are laminated in this order, electron conductivity of the cathode electrode catalyst layer at a portion on the side of the cathode diffusion layer is higher than at a portion on the side of the polymer electrolyte membrane and electron conductivity of the cathode electrode catalyst layer at the portion on the side of the polymer electrolyte membrane is lower than at the portion on the side of the cathode diffusion layer, and furthermore, electron conductivity of the anode electrode catalyst layer at a portion on the side of the anode diffusion layer is higher than at a portion on the side of the polymer electrolyte membrane and electron conductivity of the anode electrode catalyst layer at the portion on the side of the polymer electrolyte membrane is lower than at the portion on the side of the anode diffusio
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: October 13, 2009
    Assignee: Honda Motor Co. Ltd.
    Inventors: Ryoichiro Takahashi, Chikara Iwasawa, Masahiro Ise, Yoichi Asano, Hideki Watanabe, Atsuhito Yoshizawa, Takashi Suzuki, Osamu Kakutani
  • Publication number: 20090134360
    Abstract: An object of the invention is to provide an electrode catalyst layer of a solid polymer electrolyte membrane-electrode assembly expressing excellent balance between water retention and drainage in an electrode, good power generation performance under any of low humidity and high humidity conditions, and also excellent durability of power generation. The electrode catalyst layer of the invention contains catalyst particles, an ion exchange resin and a water repellent agent, wherein said water repellent agent contains at least one kind selected from the group consisting of (A) a fluorine-containing copolymer having a structure unit derived from a polyfluoroalkyl-containing (meth)acrylate and (B) a fluorine-containing copolymer having a specific structure unit derived from a fluorine-containing olefin monomer and a specific structure unit derived from a vinyl ether monomer.
    Type: Application
    Filed: October 30, 2006
    Publication date: May 28, 2009
    Applicants: JSR CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Satoshi Komatsu, Junji Kawai, Toshihiro Ohtsuki, Takanobu Yamamoto, Ryoichiro Takahashi, Kaoru Fukuda, Hiroshi Shinkai
  • Publication number: 20090130526
    Abstract: This invention provides an electrode electrolyte for a solid polymer-type fuel cell, in which a cost problem and a problem related to recovery of catalyst metals are solved, having excellent proton conductivity, dimensional stability and heat resistance. An electrode electrolyte for a solid polymer electrolyte-type fuel cell contains a polymer, which has a polyphenylene structure as a main chain and both a sulfonic acid group and a nitrogen-containing heterocyclic group as a side chain. A side chain having the nitrogen-containing heterocyclic group has a structure represented by the following general formula (D). (In formula, Z represents at least one kind of structures selected from a group consisting of a direct bond, —O— and —S—, Y represents at least one kind of structures selected from a group consisting of —CO—, —SO2—, —SO—, —CONH—, —COO—, —(CF2)1— (1 is an integer of 1 to 10) and —C(CF3)2— and R20 represents a nitrogen-containing heterocyclic group.
    Type: Application
    Filed: June 30, 2006
    Publication date: May 21, 2009
    Applicants: JSR CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Makoto Higami, Igor Rozhanskii, Yoshitaka Yamakawa, Nagayuki Kanaoka, Kaoru Fukuda, Ryoichiro Takahashi, Hiroshi Shinkai
  • Patent number: 7449132
    Abstract: The present invention provides a proton conductive membrane having capabilities of self-generating water and maintaining water, excellent ion conductivity and excellent effect of inhibiting crossover and usable for solid polymer electrolyte type fuel cells and also provides a proton conductive composition used for preparing the proton conductive membrane. The proton conductive composition comprises 100 parts by weight of a polyarylene having a sulfonic group and 0.01 to 80 parts by weight of at least one metal catalyst selected from the group consisting of platinum, gold, palladium, rhodium, iridium and ruthenium, or comprises 100 parts by weight of a polyarylene having a sulfonic group, 0.01 to 80 parts by weight of the metal catalyst, and 0.01 to 50 parts by weight of metal oxide fine particles and/or fibers in total.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: November 11, 2008
    Assignees: JSR Corporation, Honda Motor Co., Ltd.
    Inventors: Mayumi Kakuta, Toshihiro Otsuki, Nagayuki Kanaoka, Masaaki Nanaumi, Yoichi Asano, Ryoichiro Takahashi
  • Patent number: 7288336
    Abstract: A membrane electrode assembly for solid polymer electrolyte fuel cell includes an anode electrode, a cathode electrode, and a polymer electrolyte membrane sandwiched by these electrodes, the catalyst layer of cathode electrode contains a Pt—Co catalyst that is Pt—Co alloys supported by an electrical conductive material, and crystalline carbon fibers, improving the catalyst activity and controlling the oxidization corrosion reaction of the catalyst carrier can be carried out, and providing a high initial performance and superior durability.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: October 30, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kaoru Fukuda, Ryoichiro Takahashi, Junji Matsuo
  • Publication number: 20070218348
    Abstract: The present invention provides a membrane electrode assembly for use in a solid polymer electrolyte fuel cell which assembly can ensure the gas diffusivity, the capability of discharging the generated water and the moisture retentivity, and can attain an excellent electric power generation performance in the gas atmosphere under a wide variety of humidity conditions. The membrane electrode assembly comprises: a cathode electrode catalyst layer 3 and an anode electrode catalyst layer 4 respectively disposed on one side and the other side of a solid polymer electrolyte membrane 2; gas diffusion layers 5 and 6 disposed respectively on the sides of the electrode catalyst layers 3 and 4; and intermediate layers 7 and 8 comprising pores and disposed respectively between the electrode catalyst layer 3 and the gas diffusion layer 5 and between the electrode catalyst layer 4 and the gas diffusion layer 6. The volume per unit area and per unit mass (pore volume) of the pores having pore size of 0.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 20, 2007
    Inventors: Shintaro Tanaka, Yoichi Asano, Ryoichiro Takahashi, Takuma Yamawaki
  • Publication number: 20070218347
    Abstract: The present invention provides a membrane electrode assembly for use in a solid polymer electrolyte fuel cell which assembly can attain an excellent electric power generation performance both under low-humidity conditions and under high-humidity conditions. The membrane electrode assembly includes: a solid polymer electrolyte membrane 2 having proton conductivity; a cathode electrode catalyst layer 3 disposed on one side of the solid polymer electrolyte membrane 2; an anode electrode catalyst layer 4 disposed on the other side of the solid polymer electrolyte membrane 2; and two gas diffusion layers 5 and 6 disposed on a side of the cathode electrode catalyst layer 3 and a side of the anode electrode catalyst layer 4, respectively, both these sides facing away from the solid polymer electrolyte membrane 2; wherein the gas diffusion layer 6 in the anode side is smaller in contact angle to water than the gas diffusion layer 5 in the cathode side.
    Type: Application
    Filed: January 29, 2007
    Publication date: September 20, 2007
    Inventors: Ryoichiro Takahashi, Yoichi Asano, Shintaro Tanaka, Takuma Yamawaki