Patents by Inventor Ryosuke Hattori

Ryosuke Hattori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150328875
    Abstract: A composite substrate 10 is formed by bonding together a piezoelectric substrate 12 and a support substrate 14 that has a lower thermal expansion coefficient than the piezoelectric substrate. The support substrate 14 is formed by directly bonding together a first substrate 14a and a second substrate 14b at a strength that allows separation with a blade, the first and second substrates being formed of the same material, and a surface of the first substrate 14a is bonded to the piezoelectric substrate 12, the surface being opposite to another surface of the first substrate 14a bonded to the second substrate 14b.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Applicant: NGK INSULATORS, LTD.
    Inventors: Ryosuke Hattori, Yuji Hori, Tomoyoshi Tai
  • Patent number: 8907547
    Abstract: A composite substrate according to the present invention includes a piezoelectric substrate that is a single-crystal lithium tantalate or lithium niobate substrate, a support substrate that is a single-crystal silicon substrate, and an amorphous layer joining together the piezoelectric substrate and the support substrate. The amorphous layer contains 3 to 14 atomic percent of argon. The amorphous layer includes, in order from the piezoelectric substrate toward the composite substrate, a first layer, a second layer, and a third layer. The first layer contains a larger amount of a constituent element (such as tantalum) of the piezoelectric substrate than the second and third layers. The third layer contains a larger amount of a constituent element (silicon) of the support substrate than the first and second layers. The second layer contains a larger amount of argon than the first and third layers.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 9, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomoyoshi Tai, Yasunori Iwasaki, Yuji Hori, Takahiro Yamadera, Ryosuke Hattori, Kengo Suzuki
  • Patent number: 8901803
    Abstract: The present invention provides a composite substrate comprising a piezoelectric substrate that is a single-crystal lithium tantalate or lithium niobate substrate, a support substrate that is a single-crystal silicon substrate, and an amorphous layer containing argon and joining together the piezoelectric substrate and the support substrate. The amorphous layer includes, in order from the piezoelectric substrate toward the composite substrate, a first layer, a second layer, and a third layer. The first layer contains a larger amount of a constituent element of the piezoelectric substrate than the second and third layers, the third layer contains a larger amount of a constituent element of the support substrate than the first and second layers, and the second layer contains a larger amount of argon than the first and third layers.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 2, 2014
    Assignees: NGK Insulators, Ltd., NGK Ceramic Device Co., Ltd.
    Inventors: Yuji Hori, Tomoyoshi Tai, Yasunori Iwasaki, Takahiro Yamadera, Ryosuke Hattori, Kengo Suzuki
  • Patent number: 8866365
    Abstract: In a composite substrate 10, a bonding surface 21 of a piezoelectric substrate 20 is an irregular surface which is partially planarized. The irregular surface which is partially planarized includes a plurality of protrusions 23, each having a flat portion 25 on the tip thereof. The piezoelectric substrate 20 and the supporting substrate 30 are directly bonded to each other at the flat portions 25. By forming the bonding surface 21 into an irregular surface (rough surface) and providing flat portions 25 at the same time, it is possible to secure a sufficient contact area between the piezoelectric substrate 20 and the supporting substrate 30. Accordingly, in the composite substrate in which the piezoelectric substrate 20 and the supporting substrate 30 are bonded to each other, the bonding surface 21 can be roughened and direct bonding can be performed.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: October 21, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Yuji Hori, Ryosuke Hattori, Tomoyoshi Tai
  • Publication number: 20140210317
    Abstract: A composite substrate according to the present invention includes a piezoelectric substrate that is a single-crystal lithium tantalate or lithium niobate substrate, a support substrate that is a single-crystal silicon substrate, and an amorphous layer joining together the piezoelectric substrate and the support substrate. The amorphous layer contains 3 to 14 atomic percent of argon. The amorphous layer includes, in order from the piezoelectric substrate toward the composite substrate, a first layer, a second layer, and a third layer. The first layer contains a larger amount of a constituent element (such as tantalum) of the piezoelectric substrate than the second and third layers. The third layer contains a larger amount of a constituent element (silicon) of the support substrate than the first and second layers. The second layer contains a larger amount of argon than the first and third layers.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicants: NGK CERAMIC DEVICE CO., LTD., NGK INSULATORS, LTD.
    Inventors: Tomoyoshi Tai, Yasunori Iwasaki, Yuji Hori, Takahiro Yamadera, Ryosuke Hattori, Kengo Suzuki
  • Publication number: 20140210316
    Abstract: The present invention provides a composite substrate comprising a piezoelectric substrate that is a single-crystal lithium tantalate or lithium niobate substrate, a support substrate that is a single-crystal silicon substrate, and an amorphous layer containing argon and joining together the piezoelectric substrate and the support substrate. The amorphous layer includes, in order from the piezoelectric substrate toward the composite substrate, a first layer, a second layer, and a third layer. The first layer contains a larger amount of a constituent element of the piezoelectric substrate than the second and third layers, the third layer contains a larger amount of a constituent element of the support substrate than the first and second layers, and the second layer contains a larger amount of argon than the first and third layers.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicants: NGK CERAMIC DEVICE CO., LTD., NGK INSULATORS, LTD.
    Inventors: Yuji Hori, Tomoyoshi Tai, Yasunori Iwasaki, Takahiro Yamadera, Ryosuke Hattori, Kengo Suzuki
  • Publication number: 20140145558
    Abstract: In a composite substrate 10, a bonding surface 21 of a piezoelectric substrate 20 is an irregular surface which is partially planarized. The irregular surface which is partially planarized includes a plurality of protrusions 23, each having a flat portion 25 on the tip thereof. The piezoelectric substrate 20 and the supporting substrate 30 are directly bonded to each other at the flat portions 25. By forming the bonding surface 21 into an irregular surface (rough surface) and providing flat portions 25 at the same time, it is possible to secure a sufficient contact area between the piezoelectric substrate 20 and the supporting substrate 30. Accordingly, in the composite substrate in which the piezoelectric substrate 20 and the supporting substrate 30 are bonded to each other, the bonding surface 21 can be roughened and direct bonding can be performed.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 29, 2014
    Applicant: NGK INSULATORS, LTD.
    Inventors: Yuji Hori, Ryosuke Hattori, Tomoyoshi Tai