Patents by Inventor Ryu Nakano

Ryu Nakano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190259611
    Abstract: Provided are a substrate processing apparatus and a substrate processing method capable of achieving uniform trimming throughout an entire surface of a substrate. The substrate processing apparatus includes a gas channel including a center gas inlet and an additional gas inlet spaced apart from the center gas inlet, and a shower plate including a plurality of holes connected to the center gas inlet and the additional gas inlet, wherein a gas flow channel is formed having a clearance defined by a lower surface of the gas channel and an upper surface of the shower plate, the lower surface and the upper surface being substantially parallel.
    Type: Application
    Filed: March 19, 2018
    Publication date: August 22, 2019
    Inventors: Akinori Nakano, Toshihisa Nozawa, Ryu Nakano
  • Publication number: 20190172708
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: November 15, 2018
    Publication date: June 6, 2019
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 10147600
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: December 4, 2018
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 10043661
    Abstract: A method for protecting a layer includes: providing a substrate having a target layer; depositing a protective layer on the target layer, which protective layer contacts and covers the target layer and is constituted by a hydrocarbon-based layer; and depositing an oxide layer on the protective layer so that the protective layer in contact with the oxide layer is oxidized. The hydrocarbon-based layer is formed by plasma-enhanced atomic layer deposition (PEALD) using an alkylaminosilane precursor and a noble gas without a reactant.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: August 7, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Richika Kato, Ryu Nakano
  • Publication number: 20180211834
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 26, 2018
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 9875893
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: January 23, 2018
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20170338111
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: January 10, 2017
    Publication date: November 23, 2017
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 9673092
    Abstract: A film forming apparatus includes a reactor chamber, a first electrode provided in the reactor chamber and receiving electrical power, a second electrode provided in the reactor chamber and facing the first electrode, a gas supply inlet for supplying material gas to a space between the first and second electrodes, and a gas exhaust outlet for discharging the material gas. Insulating material is not exposed to a flow path for the material gas in the reactor chamber.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: June 6, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Ryu Nakano, Noboru Takamure, Hiroki Arai
  • Patent number: 9663857
    Abstract: A method stabilizes pressure of a reaction chamber during a process using a first gas and a second gas, wherein a gas inlet line is connected to the reaction chamber, and a second gas line and a first gas line are connected to another end of the gas inlet line. The method includes: feeding a first gas in pulses according to a waveform to the reaction chamber through the first gas line and the gas inlet line; and feeding a second gas in pulses according to a reverse waveform to the reaction chamber through the second gas line and the gas inlet line, wherein superimposed waveforms of the waveform and reverse waveform are made substantially or nearly flat, thereby stabilizing pressure of the reaction chamber.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: May 30, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Ryu Nakano, Wataru Adachi
  • Patent number: 9564314
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: February 7, 2017
    Assignee: ASM International N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20170018420
    Abstract: A method for protecting a layer includes: providing a substrate having a target layer; depositing a protective layer on the target layer, which protective layer contacts and covers the target layer and is constituted by a hydrocarbon-based layer; and depositing an oxide layer on the protective layer so that the protective layer in contact with the oxide layer is oxidized. The hydrocarbon-based layer is formed by plasma-enhanced atomic layer deposition (PEALD) using an alkylaminosilane precursor and a noble gas without a reactant.
    Type: Application
    Filed: September 1, 2016
    Publication date: January 19, 2017
    Inventors: Richika Kato, Ryu Nakano
  • Patent number: 9464352
    Abstract: A method for forming an oxide film by plasma-assisted cyclic processing, includes: (i) supplying a precursor to a reaction space wherein a substrate is placed; (ii) applying a first RF power to the reaction space for a first period of time without supplying a precursor; and (iii) applying a second RF power to the reaction space for a second period of time without supplying the precursor, wherein the first RF power is lower than the second RF power, and/or the first period of time is shorter than the second period of time.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: October 11, 2016
    Assignee: ASM IP Holding B.V.
    Inventors: Ryu Nakano, Naoki Inoue, Kunitoshi Namba
  • Publication number: 20160196970
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: September 4, 2015
    Publication date: July 7, 2016
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 9368352
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 14, 2016
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 9343308
    Abstract: A method for trimming a carbon-containing film includes: (i) providing a substrate having a carbon-containing film formed thereon; (ii) supplying a trimming gas and a rare gas to the reaction space, which trimming gas includes an oxygen-containing gas; and (iii) applying RF power between the electrodes to generate a plasma using the trimming gas and the rare gas and to thereby trim the carbon-containing film while controlling a trimming rate at 55 nm/min or less as a function of at least one parameter selected from the group consisting of a flow rate of an oxygen-containing gas, a flow rate of nitrogen-containing gas to be added to the oxygen-containing gas, pressure in the reaction space, RF power, a duty cycle of RF power, a distance between the electrodes, and a temperature of a susceptor on which the substrate is placed.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: May 17, 2016
    Assignee: ASM IP Holding B.V.
    Inventors: Yoshihiro Isii, Ryu Nakano, Naoki Inoue
  • Patent number: 9284642
    Abstract: A method for forming an oxide film by plasma-assisted processing includes: (i) supplying a precursor reactive to none of oxygen, CxOy, and NxOy (x and y are integers) without a plasma to a reaction space wherein a substrate is placed; (ii) exposing the precursor to a plasma of CxOy and/or NxOy in the reaction space; and (iii) forming an oxide film on the substrate using the precursor and the plasma.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 15, 2016
    Assignee: ASM IP Holding B.V.
    Inventors: Ryu Nakano, Naoki Inoue
  • Publication number: 20150315704
    Abstract: A method for forming an oxide film by plasma-assisted cyclic processing, includes: (i) supplying a precursor to a reaction space wherein a substrate is placed; (ii) applying a first RF power to the reaction space for a first period of time without supplying a precursor; and (iii) applying a second RF power to the reaction space for a second period of time without supplying the precursor, wherein the first RF power is lower than the second RF power, and/or the first period of time is shorter than the second period of time.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 5, 2015
    Applicant: ASM IP Holding B.V.
    Inventors: Ryu Nakano, Naoki Inoue, Kunitoshi Namba
  • Publication number: 20150284848
    Abstract: A method stabilizes pressure of a reaction chamber during a process using a first gas and a second gas, wherein a gas inlet line is connected to the reaction chamber, and a second gas line and a first gas line are connected to another end of the gas inlet line. The method includes: feeding a first gas in pulses according to a waveform to the reaction chamber through the first gas line and the gas inlet line; and feeding a second gas in pulses according to a reverse waveform to the reaction chamber through the second gas line and the gas inlet line, wherein superimposed waveforms of the waveform and reverse waveform are made substantially or nearly fiat, thereby stabilizing pressure of the reaction chamber.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 8, 2015
    Applicant: ASM IP Holding B.V.
    Inventors: Ryu Nakano, Wataru Adachi
  • Patent number: 9153441
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: October 6, 2015
    Assignee: ASM International, N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20150252479
    Abstract: A film forming apparatus includes a reactor chamber, a first electrode provided in the reactor chamber and receiving electrical power, a second electrode provided in the reactor chamber and facing the first electrode, a gas supply inlet for supplying material gas to a space between the first and second electrodes, and a gas exhaust outlet for discharging the material gas. Insulating material is not exposed to a flow path for the material gas in the reactor chamber.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 10, 2015
    Applicant: ASM IP HOLDING B.V.
    Inventors: Ryu NAKANO, Noboru TAKAMURE, Hiroki ARAI