Patents by Inventor Ryuji Monden

Ryuji Monden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9640801
    Abstract: A catalyst carrier production process includes a step (a) of mixing a transition metal compound (1), a nitrogen-containing organic compound (2), and a solvent to provide a catalyst carrier precursor solution; a step (b) of removing the solvent from the catalyst carrier precursor solution; and a step (c) of thermally treating a solid residue obtained in the step (b) at a temperature of 500 to 1100° C. to provide a catalyst carrier; wherein the transition metal compound (1) is partly or wholly a compound including a transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element; and at least one of the transition metal compound (1) and the nitrogen-containing organic compound (2) includes an oxygen atom.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: May 2, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Masaki Horikita, Kunchan Lee, Ryuji Monden, Chunfu Yu, Yasuaki Wakizaka, Takashi Sato, Yoshinori Abe
  • Patent number: 9570757
    Abstract: Provided is a fuel cell catalyst layer which has a catalytic performance equivalent to or higher than fuel cell catalyst layers containing platinum alone and which is inexpensive. The fuel cell catalyst layer of the present invention includes a metal oxycarbonitride-containing layer (I) and a platinum-containing layer (II). It is preferable that the mass ratio per unit area of the metal oxycarbonitride in the layer (I) to platinum in the layer (II) (metal oxycarbonitride/platinum) is 2 to 500. It is preferable that the mass per unit area of platinum in the layer (II) is 0.005 to 0.2 mg/cm2.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: February 14, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Takuya Imai, Hiroshi Nakajima
  • Publication number: 20160293970
    Abstract: A redox flow battery includes: first carbon nanotubes having an average diameter of 100 nm or r core, and second carbon nanotubes having an average diameter of 30 nm or less, in which the second carbon nanotubes are adhered to surfaces of the first carbon nanotubes such that the second carbon nanotubes bridge between the plural first carbon nanotubes. Since the redox flow battery includes an electrode material and an electrode including the electrode material, the electromotive force and the charging capacity are high.
    Type: Application
    Filed: November 11, 2014
    Publication date: October 6, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Kenzo HANAWA, Ryuji MONDEN, Takenori NISHIKATA
  • Publication number: 20160276675
    Abstract: Electrocatalyst layers include an electrocatalyst having high oxygen reduction activity that is useful as an alternative material to platinum catalysts. Uses of the electrocatalyst layers are also disclosed. The electrocatalyst layer includes an electrocatalyst that is formed of a metal oxide obtained by thermally decomposing a metal organic compound. The metal element forming the electrocatalyst is preferably one selected from the group consisting of niobium, titanium, tantalum and zirconium.
    Type: Application
    Filed: May 31, 2016
    Publication date: September 22, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Tadatoshi KUROZUMI, Toshikazu SHISHIKURA, Ryuji MONDEN
  • Patent number: 9450250
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium. Also disclosed is a process for producing the catalyst.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: September 20, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Yasuaki Wakizaka
  • Publication number: 20160190605
    Abstract: A catalyst carrier production process includes a step (a) of mixing a transition metal compound (1), a nitrogen-containing organic compound (2), and a solvent to provide a catalyst carrier precursor solution; a step (b) of removing the solvent from the catalyst carrier precursor solution; and a step (c) of thermally treating a solid residue obtained in the step (b) at a temperature of 500 to 1100° C. to provide a catalyst carrier; wherein the transition metal compound (1) is partly or wholly a compound including a transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element; and at least one of the transition metal compound (1) and the nitrogen-containing organic compound (2) includes an oxygen atom.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Masaki HORIKITA, Kunchan LEE, Ryuji MONDEN, Chunfu YU, Yasuaki WAKIZAKA, Takashi SATO, Yoshinori ABE
  • Patent number: 9379390
    Abstract: In a direct-liquid fuel cell supplied directly with a liquid fuel, a process for producing an electrode catalyst for a direct-liquid fuel cell is provided which is capable of suppressing decrease in cathode potential caused by liquid fuel crossover and providing an inexpensive and high-performance electrode catalyst for a direct-liquid fuel cell. The process for producing an electrode catalyst for a direct-liquid fuel cell includes Step A of mixing at least a transition metal-containing compound with a nitrogen-containing organic compound to obtain a catalyst precursor composition, and Step C of heat-treating the catalyst precursor composition at a temperature of from 500 to 1100° C. to obtain an electrode catalyst, wherein part or entirety of the transition metal-containing compound includes, as a transition metal element, at least one transition metal element M1 selected from Group IV and Group V elements of the periodic table.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: June 28, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Kunchan Lee, Chunfu Yu, Ryuji Monden, Masaki Horikita, Takashi Sato
  • Publication number: 20160149225
    Abstract: An oxygen reduction catalyst which includes composite particles including a portion including an inorganic metal compound and a portion containing carbon. The composite particles include a metal element M1, carbon, and oxygen as constituent elements; the amount of carbon atoms is 1 to 10 mol, and the amount of oxygen atoms is 1 to 3 mol, assuming that the total amount of atoms in the metal element M1 is 1 mol; a G-band and a D-band are present in a Raman spectrum, and a V/G ratio defined in an expression described below is 0.10 to 0.35: V/G ratio=(minimum value of spectral intensity in region V which is a region between G-band and D-band)/(peak intensity in G-band).
    Type: Application
    Filed: July 8, 2014
    Publication date: May 26, 2016
    Applicant: SHOW DENKO K.K.
    Inventors: Yuji ITO, Junya SAKAGUCHI, Takuya IMAI, Ryuji MONDEN, Masayuki YOSHIMURA
  • Patent number: 9350025
    Abstract: A method for producing a fuel cell electrode catalyst including a metal element selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium and having high catalytic activity through heat treatment at comparatively low temperature. The method including: a step (1) of mixing at least a certain metal compound (1), a nitrogen-containing organic compound (2), and a solvent to obtain a catalyst precursor solution, a step (2) of removing the solvent from the catalyst precursor solution, and a step (3) of heat-treating a solid residue, obtained in the step (2), at a temperature of 500 to 1100° C. to obtain an electrode catalyst; a portion or the entirety of the metal compound (1) being a compound containing, as the metal element, a metal element M1 selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: May 24, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Yasuaki Wakizaka, Kunchan Lee, Takashi Sato
  • Patent number: 9318749
    Abstract: A catalyst carrier production process includes a step (a) of mixing a transition metal compound (1), a nitrogen-containing organic compound (2), and a solvent to provide a catalyst carrier precursor solution; a step (b) of removing the solvent from the catalyst carrier precursor solution; and a step (c) of the thermally treating a solid residue obtained in the step (b) at a temperature of 500 to 1100° C. to provide a catalyst carrier; wherein the transition metal compound (1) is partly or wholly a compound including a transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element; and at least one of the transition metal compound (1) and the nitrogen-containing organic compound (2) includes an oxygen atom.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: April 19, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Masaki Horikita, Kunchan Lee, Ryuji Monden, Chunfu Yu, Yasuaki Wakizaka, Takashi Sato, Yoshinori Abe
  • Publication number: 20150372311
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium. Also disclosed is a process for producing the catalyst.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 24, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji MONDEN, Tadatoshi KUROZUMI, Toshikazu SHISHIKURA, Yasuaki WAKIZAKA
  • Patent number: 9190670
    Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal element M, carbon, nitrogen and oxygen, wherein the catalyst shows peaks at 1340 cm?1 to 1365 cm?1 and at 1580 cm?1 to 1610 cm?1 as analyzed by Raman spectroscopy and the metal element M is one selected from titanium, iron, niobium, zirconium and tantalum. The catalysts of the invention are stable and are not corroded in acidic electrolytes or at high potential, have high oxygen reducing ability and are inexpensive compared to platinum. Fuel cells having the catalysts are therefore relatively inexpensive and have high performance.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: November 17, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Takuya Imai, Toshikazu Shishikura, Ryuji Monden, Kenichiro Ota
  • Patent number: 9139450
    Abstract: A process for producing fuel cell catalysts includes a step (I) of heating a carbonitride of a transition metal in an inert gas containing oxygen, and a step (II) of heating the product from the step (I) in an inert gas that does not substantially contain oxygen.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: September 22, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Takuya Imai, Ryuji Monden, Toshikazu Shishikura
  • Patent number: 9136541
    Abstract: Provided is a process for producing a fuel cell electrode catalyst having high catalytic activity which uses a transition metal, e.g., titanium, which process comprises thermal treatment at relatively low temperature, i.e., not including thermal treatment at high temperature (calcining) step. The process for producing a fuel cell electrode catalyst comprises a step (1) of mixing at least a transition metal-containing compound, a nitrogen-containing organic compound and a solvent to provide a catalyst precursor solution; a step (2) of removing the solvent from the catalyst precursor solution; and a step (3) of thermally treating a solid residue obtained in the step (2) at a temperature of 500 to 1100° C. to provide an electrode catalyst; wherein the transition metal-containing compound is partly or wholly a compound comprising at least one transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: September 15, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Kunchan Lee, Ryoko Konta, Masaki Horikita, Chunfu Yu, Yasuaki Wakizaka, Kenichiro Ota, Ryuji Monden, Kazunori Ichioka, Takashi Sato, Takuya Imai
  • Patent number: 9118083
    Abstract: A method for producing a fuel cell electrode catalyst, including: a step (1) of mixing at least a metal compound (1), a nitrogen-containing organic compound (2), a compound (3) containing fluorine and at least one element A selected from the group consisting of boron, phosphorus, and sulfur, and a solvent to obtain a catalyst precursor solution, a step (2) of removing the solvent from the catalyst precursor solution, and a step (3) of heat-treating a solid residue, obtained in the step (2), at a temperature of 500 to 1100° C. to obtain an electrode catalyst; a portion or the entirety of the metal compound (1) being a compound containing, as a metal element, at least one transition metal element M1 selected from the elements of group 4 and group 5 of the periodic table; and at least one of the compounds (1), (2), and (3) having an oxygen atom.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: August 25, 2015
    Assignee: SHOWA DENKO K.K
    Inventors: Ryuji Monden, Takuya Imai, Yasuaki Wakizaka, Kunchan Lee, Takashi Sato
  • Patent number: 9099749
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: August 4, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Yasuaki Wakizaka
  • Patent number: 9083051
    Abstract: Provided is a process for producing a fuel cell electrode catalyst having high catalytic activity which uses a transition metal, e.g., titanium, which process comprises thermal treatment at relatively low temperature, i.e., not including thermal treatment at high temperature (calcining) step. The process for producing a fuel cell electrode catalyst comprises a step (1) of mixing at least a transition metal-containing compound, a nitrogen-containing organic compound and a solvent to provide a catalyst precursor solution; a step (2) of removing the solvent from the catalyst precursor solution; and a step (3) of thermally treating a solid residue obtained in the step (2) at a temperature of 500 to 1100° C. to provide an electrode catalyst; wherein the transition metal-containing compound is partly or wholly a compound comprising at least one transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 14, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Kunchan Lee, Ryoko Konta, Masaki Horikita, Chunfu Yu, Yasuaki Wakizaka, Kenichiro Ota, Ryuji Monden, Kazunori Ichioka, Takashi Sato, Takuya Imai
  • Patent number: 9048499
    Abstract: [Object] The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. [Solution] A catalyst of the invention includes a metal oxycarbonitride that contains titanium and at least one metal (hereinafter, also referred to as “metal M” or simply “M”) selected from silver, calcium, strontium, yttrium, ruthenium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: June 2, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Toshikazu Shishikura, Takuya Imai, Kenichiro Ota
  • Publication number: 20150093681
    Abstract: An object of the present invention is to provide a fuel cell electrode catalyst with which high durability and a high maximum output density are obtained even when a fuel cell is continuously operated for long time; a method for producing the fuel cell electrode catalyst; a fuel cell in which the catalyst is used; and the like. A method for producing a fuel cell electrode catalyst is provided, the method including: a step of preparing a catalyst precursor comprising each atom of a metal element, carbon, nitrogen, and oxygen, and comprising copper as the metal element; and a contact step of bringing the catalyst precursor and an acid solution into contact with each other to obtain a catalyst.
    Type: Application
    Filed: March 27, 2013
    Publication date: April 2, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Yuji Ito, Kunchan Lee, Takashi Sato
  • Publication number: 20150044595
    Abstract: An object of the present invention is to suppress flooding phenomenon in an electrode catalyst for fuel cells containing a metal atom, a carbon atom, a nitrogen atom and an oxygen atom. A production process of an electrode catalyst for fuel cells is provided which includes a fluorination step of bringing a catalyst body into contact with fluorine, the catalyst body having an atom of at least one metal element selected from the group consisting of zinc, titanium, niobium, zirconium, aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, samarium and lanthanum, a carbon atom, a nitrogen atom and an oxygen atom.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 12, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Yuji Ito, Kunchan Lee, Takashi Sato