Patents by Inventor Ryuji Monden

Ryuji Monden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120070763
    Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability, and processes for producing the catalysts and uses of the catalysts. The catalyst of the invention includes a metal oxycarbonitride that contains at least one metal selected from tantalum, vanadium, molybdenum and zirconium (hereinafter, also referred to as “metal M” or simply “M”) and does not contain any of platinum, titanium and niobium.
    Type: Application
    Filed: May 11, 2010
    Publication date: March 22, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Toshikazu Shishikura, Yasuaki Wakizaka, Kenichiro Ota
  • Publication number: 20120058415
    Abstract: [Object] The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. [Solution] A catalyst of the invention includes a metal oxycarbonitride that contains titanium and at least one metal (hereinafter, also referred to as “metal M” or simply “M”) selected from silver, calcium, strontium, yttrium, ruthenium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
    Type: Application
    Filed: May 11, 2010
    Publication date: March 8, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Toshikazu Shishikura, Takuya Imai, Kenichiro Ota
  • Publication number: 20110189583
    Abstract: The invention provides catalysts which are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalysts include a niobium-containing oxycarbonitride having I2/(I1+I2) of not less than 0.25 wherein I1 is the maximum X-ray diffraction intensity at diffraction angles 2? of 25.45° to 25.65° and I2 is the maximum X-ray diffraction intensity at diffraction angles 2?=2? of 25.65° to 26.0° according to X-ray powder diffractometry (Cu—K? radiation).
    Type: Application
    Filed: October 6, 2009
    Publication date: August 4, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Takuya Imai, Ryuji Monden, Toshikazu Shishikura
  • Publication number: 20110059386
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalysts include a niobium oxycarbonitride represented by a compositional formula NbCxNyOz (wherein x, y and z represent a ratio of the numbers of the atoms, 0.05?x<0.7, 0.01?y<0.7, 0.4?z<2.5, 1.0<x+y+z<2.56, and 4.0?4x+3y+2z).
    Type: Application
    Filed: January 16, 2009
    Publication date: March 10, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Publication number: 20110053040
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. A catalyst includes a metal oxycarbonitride containing niobium and at least one metal M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and nickel.
    Type: Application
    Filed: January 16, 2009
    Publication date: March 3, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikzu Shishikura, Takuya Imai
  • Publication number: 20110053049
    Abstract: The invention provides processes for producing fuel cell catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The process for producing fuel cell catalysts includes a step (I) of heating a carbonitride of a transition metal in an inert gas containing oxygen, and a step (II) of heating the product from the step (I) in an inert gas that does not substantially contain oxygen.
    Type: Application
    Filed: March 23, 2009
    Publication date: March 3, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Takuya Imai, Ryuji Monden, Toshikazu Shishikura
  • Publication number: 20110020729
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium.
    Type: Application
    Filed: March 23, 2009
    Publication date: January 27, 2011
    Applicant: SHOWDA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Yasuaki Wakizaka
  • Publication number: 20110008709
    Abstract: The present invention provides a catalyst which is not corroded in an acidic electrolyte or at a high potential, is excellent in durability and has high oxygen reduction activity. The catalyst of the present invention comprises an oxycarbonitride of titanium. The oxycarbonitride of titanium is preferably represented by the composition formula TiCxNyOz (wherein x, y and z represent a ratio of the numbers of atoms and are numbers satisfying the conditions of 0<x?1.0, 0<y?1.0, 0.1?z<2.0, 1.0<x+y+z?2.0 and 2.0?4x+3y+2z). The catalyst is preferably a catalyst for a fuel cell.
    Type: Application
    Filed: February 17, 2009
    Publication date: January 13, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Toshikazu Shishikura, Ryuji Monden, Tadatoshi Kurozumi
  • Publication number: 20100331172
    Abstract: The present invention provides a catalyst carrier having excellent durability and capable of attaining high catalytic ability without increasing the specific surface area thereof, and a catalyst obtainable by using the catalyst carrier. The catalyst carrier of the present invention comprises a metal oxycarbonitride, preferably the metal contained in the metal oxycarbonitride comprises at least one selected from the group consisting of niobium, tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and nickel. Moreover, the catalyst of the present invention comprises the catalyst carrier and a catalyst metal supported on the catalyst carrier.
    Type: Application
    Filed: February 10, 2009
    Publication date: December 30, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Publication number: 20100255404
    Abstract: Electrocatalyst layers include an electrocatalyst having high oxygen reduction activity that is useful as an alternative material to platinum catalysts. Uses of the electrocatalyst layers are also disclosed. The electrocatalyst layer includes an electrocatalyst that is formed of a metal oxide obtained by thermally decomposing a metal organic compound. The metal element forming the electrocatalyst is preferably one selected from the group consisting of niobium, titanium, tantalum and zirconium.
    Type: Application
    Filed: August 22, 2008
    Publication date: October 7, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Ryuji Monden
  • Publication number: 20100227253
    Abstract: The present invention provides a catalyst which is not corroded in an acidic electrolyte or at a high potential, is excellent in durability and has high oxygen reduction ability. The catalyst of the present invention is characterized by including a niobium oxycarbonitride. The catalyst of the invention is also characterized by including a niobium oxycarbonitride represented by the composition formula NbCxNyOz, wherein x, y and z represent a ratio of the numbers of atoms and are numbers satisfying the conditions of 0.01?x?2, 0.01?y?2, 0.01?z?3 and x+y+z?5.
    Type: Application
    Filed: August 8, 2008
    Publication date: September 9, 2010
    Applicant: SHOWA DENKO K.K
    Inventors: Ryuji Monden, Hiroshi Konuma, Toshikazu Shishikura, Tadatoshi Kurozumi
  • Publication number: 20070155928
    Abstract: The present invention relates to a phosphorescent polymer compound comprising a phosphorescent monomer unit and a hole transporting monomer unit having a triphenylamine structure represented by the formula (1): (in the formula, the symbols have the same meanings as defined in the Description), and an organic light emitting device using the compound. Use of the phosphorescent polymer compound of the present invention enables production of organic light emitting device with a high light emitting efficiency at a low voltage, which is suitable for increasing the emission area and mass production.
    Type: Application
    Filed: August 27, 2004
    Publication date: July 5, 2007
    Inventors: Tamami Koyama, Takeshi Igarashi, Kumio Kondoh, Isamu Taguchi, Ryuji Monden
  • Patent number: 7232469
    Abstract: An electrode for electrolytic capacitors having a large capacitance and having excellent tan ?, heat resistance, humidity resistance and stability. An electrolytic capacitor using the electrode. An electrode obtained by attaching a compound having a siloxane bond onto the surface of an electrode body comprising a valve-acting metal having formed thereon a dielectric film. The compound having a siloxane bond is attached by coating, dipping or vapor deposition. A solid electrolytic capacitor obtained by forming an electrolyte comprising an electrically conducting polymer on the electrode.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: June 19, 2007
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Atsushi Sakai, Yuji Furuta, Hideki Ohata
  • Patent number: 7175781
    Abstract: A solid electrolytic capacitor includes a valve acting metal having microfine pores, a dielectric film formed on a surface of the valve acting metal, and a solid electrolyte layer provided on the dielectric film, in which at least a portion of the solid electrolyte layer is of a lamellar structure. In particular, a solid electrolytic capacitor includes an electrically conducting polymer having a specified condensed ring structure containing (1) a solid electrolyte layer containing a sulfoquinone anion, and (2) a solid electrolyte layer containing an anthracenesulfonate ion and other anion.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: February 13, 2007
    Assignee: Showa Denko K.K.
    Inventors: Hiroshi Konuma, Koro Shirane, Ryuji Monden, Atsushi Sakai, Yuji Furuta, Katsuhiko Yamazaki, Toru Sawaguchi, Hideko Ohata, Yoshiaki Ikenoue
  • Patent number: 7141081
    Abstract: The present invention relates to a solid electrolytic capacitor having a masking structure in which the insulation between the anode part and the cathode part can be ensured without fail, to its production method, to a method for coating a masking agent on a solid electrolytic capacitor substrate, and to apparatus therefore. According to the present invention, the masking material covers the dielectric film on the metal material having valve action and sufficiently infiltrates into the core metal made of a metal having valve action while the solid electrolyte is masked by the masking material without fail, so that a solid electrolytic capacitor can be produced that has a reduced leakage current and a reduced stress generated at the reflow treatment or the like.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: November 28, 2006
    Assignee: Showa Denko K.K.
    Inventors: Atsushi Sakai, Ryuji Monden, Hiroshi Nitoh, Toshihiro Okabe, Yuji Furuta, Hideki Ohata, Koro Shirane
  • Patent number: 7112647
    Abstract: An object of the present invention is to provide a fluorinated polymer of adequate molecular weight with excellent transparency in a wavelength range from visible to near infrared, and to also provide a method of producing such a polymer. The present invention provides a fluorinated polymer comprising a structure represented by a formula (1) as a structural unit, as well as a method of producing this polymer using a corresponding tetrafluoroxylylenediamine or a tetrafluoroxylylene glycol as a raw material.
    Type: Grant
    Filed: December 25, 2002
    Date of Patent: September 26, 2006
    Assignee: Showa Denko K.K.
    Inventors: Isamu Taguchi, Ryuji Monden, Nobutoshi Sasaki, Hideo Miyata, Kohei Morikawa
  • Publication number: 20060179627
    Abstract: A method for producing a solid electrolytic capacitor, comprising coating a solution containing a monomer of an electroconducting polymer and a solution containing an oxidizing agent in repeating sequence on a valve-acting metal anode having formed on the surface thereof an oxide dielectric film, and then polymerizing wherein the electroconducting polymer is formed by setting the humidity in the atmosphere of polymerization process to from 10% to less than 60%.
    Type: Application
    Filed: April 6, 2006
    Publication date: August 17, 2006
    Inventors: Atsushi Sakai, Ryuji Monden, Toru Sawaguchi, Katsuhiko Yamazaki, Yuji Furuta, Hideki Ohata
  • Patent number: 7087292
    Abstract: A solid electrolytic capacitor comprises an electrically conducting polymer composition formed on the surface of an oxide film which is formed on a valve-acting metal, by specifying the viscosity of an oxidizing agent solution and/or a monomer solution, particularly by specifying the viscosity to less than about 100 cp. A solid electrolytic capacitor can comprise an electroconducting polymer composition formed on the surface of an oxide film layer which is formed on a valve-acting metal, wherein a monomer compound or a derivative thereof as a repeating unit is polymerized by setting the humidity in the atmosphere to from about 10% to less than about 60%.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: August 8, 2006
    Assignee: Showa Denko K.K.
    Inventors: Atsushi Sakai, Ryuji Monden, Toru Sawaguchi, Katsuhiko Yamazaki, Yuji Furuta, Hideki Ohata
  • Patent number: 7070631
    Abstract: A method for producing an aluminum foil for solid electrolytic capacitors, comprising the steps of cutting an aluminum foil into a shape of a capacitor element, etching a cut end part formed by said cutting, and then electrochemically forming the etched aluminum foil, aluminum foil for solid electrolytic capacitors obtained by the method, solid electrolytic capacitor using the aluminum foil, and method for producing such a solid electrolytic capacitor are disclosed. By use of the aluminum foil for solid electrolytic capacitors according to the present invention, capacitor characteristics such as an increase in the capacitor capacitance and a decrease in the leakage current from the cut end part of a stacked type aluminum solid electrolytic capacitor can be efficiently improved, the anode moieties can be efficiently connected without fail on stacking elements and the productivity of stacked type aluminum solid electrolytic capacitor can be elevated.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: July 4, 2006
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Atsushi Sakai, Teruto Ohta
  • Patent number: 7060205
    Abstract: The present invention relates to a solid electrolytic capacitor comprising a solid electrolyte layer and an electrically conducting layer comprising metallic powder or an electrically conducting layer comprising an electrically conducting carbon layer and a layer formed thereon and comprising metallic powder in which at least one of said layers contains a rubber-like elastic material; a production process thereof; a solid electrolyte for use in the solid electrolytic capacitor; a production process of the solid electrolyte; an electrically conducting paste for use in the solid electrolytic capacitor; and an electrically carbon conducting paste for use in the solid electrolytic capacitor. The solid electrolytic capacitor of the present invention can be made compact and can be endowed with high-capacitance and low-impedance and is excellent in external force-relaxing properties, productivity, heat resistance and moisture resistance, etc.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: June 13, 2006
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Ryuji Monden, Katsuhiko Yamazaki, Atsushi Sakai, Yuji Furuta, Hideki Ohata, Koro Shirane, Hiroshi Konuma