Patents by Inventor Saied N. Tehrani

Saied N. Tehrani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6912107
    Abstract: An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14), a second electrode (18) and a spacer layer (16). The first electrode (14) and the second electrode (18) include ferromagnetic layers (26 & 28). A spacer layer (16) is located between the ferromagnetic layer (26) of the first electrode (14) and the ferromagnetic layer (28) of the second electrode (16) for permitting tunneling current in a direction generally perpendicular to the ferromagnetic layers (26 & 28). The device includes insulative veils (34) characterized as electrically isolating the first electrode (14) and the second electrode (18), the insulative veils (34) including non-magnetic and insulating dielectric properties.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: June 28, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Eugene Youjun Chen, Mark Durlam, Saied N. Tehrani, Mark DeHerrera, Gloria Kerszykowski, Kelly Wayne Kyler
  • Patent number: 6835423
    Abstract: An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14), a second electrode (18) and a spacer layer (16). The first electrode (14) and the second electrode (18) include ferromagnetic layers (26 & 28). A spacer layer (16) is located between the ferromagnetic layer (26) of the first electrode (14) and the ferromagnetic layer (28) of the second electrode (16) for permitting tunneling current in a direction generally perpendicular to the ferromagnetic layers (26 & 28). The device includes insulative veils (34) characterized as electrically isolating the first electrode (14) and the second electrode (18), the insulative veils (34) including non-magnetic and insulating dielectric properties.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: December 28, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Eugene Youjun Chen, Mark Durlam, Saied N. Tehrani, Mark DeHerrera, Gloria Kerszykowski, Kelly Wayne Kyler
  • Patent number: 6812040
    Abstract: A method of fabricating a magnetoresistive random access memory device comprising the steps of providing a substrate, forming a conductive layer positioned on the substrate, forming a magnetoresistive random access memory device positioned on conductive layer, forming a metal cap on the magnetoresistive random access memory device, and electroless plating a bump metal layer on the metal cap. The bump metal layer acts as a self-aligned via for a bit line subsequently formed thereon.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: November 2, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kelly Kyler, Saied N. Tehrani, John J. D'urso, Gregory W. Grynkewich, Mark A. Durlam, Brian Butcher
  • Publication number: 20040197579
    Abstract: An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14), a second electrode (18) and a spacer layer (16). The first electrode (14) and the second electrode (18) include ferromagnetic layers (26 & 28). A spacer layer (16) is located between the ferromagnetic layer (26) of the first electrode (14) and the ferromagnetic layer (28) of the second electrode (16) for permitting tunneling current in a direction generally perpendicular to the ferromagnetic layers (26 & 28). The device includes insulative veils (34) characterized as electrically isolating the first electrode (14) and the second electrode (18), the insulative veils (34) including non-magnetic and insulating dielectric properties.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 7, 2004
    Inventors: Eugene Youjun Chen, Mark Durlam, Saied N. Tehrani, Mark DeHerrera, Gloria Kerszykowski, Kelly Wayne Kyler
  • Publication number: 20030175997
    Abstract: A method of fabricating a magnetoresistive random access memory device comprising the steps of providing a substrate, forming a conductive layer positioned on the substrate, forming a magnetoresistive random access memory device positioned on conductive layer, forming a metal cap on the magnetoresistive random access memory device, and electroless plating a bump metal layer on the metal cap. The bump metal layer acts as a self-aligned via for a bit line subsequently formed thereon.
    Type: Application
    Filed: March 12, 2002
    Publication date: September 18, 2003
    Inventors: Kelly Kyler, Saied N. Tehrani, John J. D'urso, Gregory W. Grynkewich, Mark A. Durlam, Brian Butcher
  • Publication number: 20030134096
    Abstract: An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14), a second electrode (18) and a spacer layer (16). The first electrode (14) and the second electrode (18) include ferromagnetic layers (26 & 28). A spacer layer (16) is located between the ferromagnetic layer (26) of the first electrode (14) and the ferromagnetic layer (28) of the second electrode (16) for permitting tunneling current in a direction generally perpendicular to the ferromagnetic layers (26 & 28). The device includes insulative veils (34) characterized as electrically isolating the first electrode (14) and the second electrode (18), the insulative veils (34) including non-magnetic and insulating dielectric properties.
    Type: Application
    Filed: January 22, 2003
    Publication date: July 17, 2003
    Inventors: Eugene Youjun Chen, Mark Durlam, Saied N. Tehrani, Mark DeHerrera, Gloria Kerszykowski, Kelly Wayne Kyler
  • Patent number: 6512689
    Abstract: A magnetoresistive random access memory architecture free of isolation devices includes a plurality of data columns of non-volatile magnetoresistive elements. A reference column includes non-volatile magnetoresistive elements positioned adjacent to the data column. Each column is connected to a current conveyor. A selected data current conveyor and the reference current conveyor are connected to inputs of a differential amplifier for differentially comparing a data voltage to a reference voltage. The current conveyors are connected directly to the ends of the data and reference bitlines. This specific arrangement allows the current conveyors to be clamped to the same voltage which reduces or removes sneak circuits to substantially reduce leakage currents.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: January 28, 2003
    Assignee: Motorola, Inc.
    Inventors: Peter K. Naji, Mark A. Durlam, Saied N. Tehrani
  • Patent number: 6233172
    Abstract: An improved and novel magnetic element (10; 10′; 50; 50′; 80) including a plurality of thin film layers wherein the bit end magneto-static demagnetizing fields cancel the total positive coupling of the structure to obtain dual magnetic states in a zero external field. Additionally disclosed is a method of fabricating a magnetic element (10) by providing a plurality of thin film layers wherein the bit end magneto-static demagnetizing fields of the thin film layers cancel the total positive coupling of the structure to obtain dual magnetic states in a zero external field.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: May 15, 2001
    Assignee: Motorola, Inc.
    Inventors: Eugene Youjun Chen, Jon Michael Slaughter, Mark Durlam, Mark DeHerrera, Saied N. Tehrani
  • Patent number: 6211090
    Abstract: A method of fabricating a flux concentrator for use in magnetic memory devices including the steps of providing at least one magnetic memory bit (10) and forming proximate thereto a material stack defining a copper (Cu) damascene bit line (56) including a flux concentrating layer (52). The method includes the steps of depositing a bottom dielectric layer (32), an optional etch stop (34) layer, and a top dielectric layer (36) proximate the magnetic memory bit (10). A trench (38) is etched in the top dielectric layer (36) and the bottom dielectric layer (32). A first barrier layer (42) is deposited in the trench (38). Next, a metal system (29) is deposited on a surface of the first barrier layer (42). The metal system (29) includes a copper (Cu) seed material (44), and a plated copper (Cu) material (46), a first outside barrier layer (50), a flux concentrating layer (52), and a second outside barrier layer (54). The metal system (29) is patterned and etched to define a copper (Cu) damascene bit line (56).
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: April 3, 2001
    Assignee: Motorola, Inc.
    Inventors: Mark Durlam, Eugene Youjun Chen, Saied N. Tehrani, Jon Michael Slaughter, Gloria Kerszykowski, Kelly Wayne Kyler
  • Patent number: 6177204
    Abstract: A multi-layer magnetic material (10) has magnetic vectors (21,22) that point along a length (27) of the material (10). Opposing magnetic fields cause the vectors to snap past the perpendicular position with a rapid change in the resistance of the material. The material is used as a memory cell (37,38,39,41) of a memory (36).
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: January 23, 2001
    Assignee: Motorola, Inc.
    Inventors: Eugene Chen, Saied N. Tehrani
  • Patent number: 6174737
    Abstract: An improved and novel MRAM device with magnetic memory elements and circuitry for controlling magnetic memory elements is provided. The circuitry, for example, transistor (12a) having a gate (17a), a drain (18) and a source (16a) is integrated on a substrate (11) and coupled to a magnetic memory element (43) on the circuitry through a plug conductor (19a) and a conductor line (45). The circuitry is fabricated first under the CMOS process and then magnetic memory elements (43, 44). Digit line (29) and bit line (48) are placed under and on top of magnetic memory element (43), respectively, and enabled to access magnetic memory element (43). These lines are enclosed by a high permeability layer (31, 56, 58) excluding a surface facing magnetic memory element (43), which shields and focuses a magnetic field toward magnetic memory element (43).
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: January 16, 2001
    Assignee: Motorola, Inc.
    Inventors: Mark Durlam, Gloria Kerszykowski, Jon Slaughter, Theodore Zhu, Eugene Chen, Saied N. Tehrani, Kelly W. Kyler
  • Patent number: 6153443
    Abstract: An improved and novel fabrication method for magnetoresistive random access memory (MRAM) is provided. An MRAM device has memory elements and circuitry for managing the memory elements. The circuitry includes transistor (12a), digit line (29), etc., which are integrated on a substrate (11). The circuitry is fabricated first under the CMOS process and then magnetic memory elements (53, 54). A dielectric layer (40, 41) is deposited on the circuit, and trenches (42, 43) are formed in the dielectric layer. A blanket layer (46), which includes magnetic layers (48, 49) and a non-magnetic layer (50) sandwiched by the magnetic layers, is deposited on dielectric layer (41) and in the trenches. Then, the blanket layer outside the trenches is removed and MRAM elements (53, 54) are formed in the trenches.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: November 28, 2000
    Assignee: Motorola, Inc.
    Inventors: Mark Durlam, Gloria Kerszykowski, Jon M. Slaughter, Eugene Chen, Saied N. Tehrani, Kelly W. Kyler, X. Theodore Zhu
  • Patent number: 5978257
    Abstract: A multi-state, multi-layer magnetic memory cell including a first conductor, a first magnetic layer contacting the first conductor, an insulating layer on the first magnetic layer, a second magnetic layer on the insulating layer, a second conductor contacting the second magnetic layer, and a word line adjacent, or in contact with, the cell so as to provide a magnetic field to partially switch magnetic vectors along the length of the first magnetic layer. Information is stored by passing one current through the word line and a second current through the first and second conductors sufficient to switch vectors in the first and second magnetic layers. Sensing is accomplished by passing a read current through a word line sufficient to switch one layer (and not the other) and a sense current through the cell, by way of the first and second conductors, and measuring a resistance across the cell.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: November 2, 1999
    Assignee: Motorola, Inc.
    Inventors: Xiaodong T. Zhu, Herbert Goronkin, Saied N. Tehrani
  • Patent number: 5966323
    Abstract: A low switching field magnetoresistive tunneling junction memory cell including a first exchange coupled structure having a pair of magnetoresistive layers and an exchange interaction layer sandwiched therebetween so as to pin the magnetic vectors of the pair of layers anti-parallel, a second exchange coupled structure having a pair of magnetoresistive layers and an exchange interaction layer sandwiched therebetween so as to pin the magnetic vectors of the pair of layers anti-parallel, and electrically insulating material sandwiched between the first and second exchange coupled structures to form a magnetoresistive tunneling junction. Each of the first and second exchange coupled structures, and hence the memory cell, has no net magnetic moment.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 12, 1999
    Assignee: Motorola, Inc.
    Inventors: Eugene Chen, Mark Durlam, Saied N. Tehrani
  • Patent number: 5959880
    Abstract: A low aspect ratio magnetoresistive tunneling junction memory cell includes two layers of magnetoresistive material separated by electrically insulating material so as to form a magnetoresistive tunneling junction. An exchange interaction layer is sandwiched between one layer of the junction and a third layer of magnetoresistive material so as to pin the magnetic vector of one layer of the junction anti-parallel to a magnetic vector in the third layer so that magnetostatic interaction between the junction layers is canceled and the magnetic vector of the one layer is free to move in either of the two directions parallel to the polarization axis. Antiferromagnetic material is positioned adjacent the third layer so as to fix the magnetic vector in the third layer uni-directionally parallel to the polarization axis.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: September 28, 1999
    Assignee: Motorola, Inc.
    Inventors: Jing Shi, Theodore Zhu, Saied N. Tehrani, Eugene Chen, Mark Durlam
  • Patent number: 5953248
    Abstract: A low switching field magnetic tunneling junction memory cell including an antiferromagnetically coupled structure having first and second magnetoresistive layers of different thicknesses and a non-magnetic conducting layer sandwiched therebetween so that the magnetic vectors of the pair of layers are anti-parallel with no applied magnetic field, a magnetoresistive structure having a magnetic vector, and electrically insulating material sandwiched between the antiferromagnetically coupled structure and the magnetoresistive structure to form a magnetic tunneling junction.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: September 14, 1999
    Assignee: Motorola, Inc.
    Inventors: Eugene Chen, Saied N. Tehrani
  • Patent number: 5943574
    Abstract: A method of fabricating 3D semiconductor circuits including providing a conductive layer with doped polysilicon thereon patterned and annealed to form first single grain polysilicon terminals of semiconductor devices. Insulated gate contacts are spaced vertically from the terminals so as to define vertical vias and polysilicon is deposited in the vias to form conduction channels. An upper portion of the polysilicon in the vias is doped to form second terminals for the semiconductor devices, and the polysilicon is annealed to convert it to single grain polysilicon. A second electrically conductive layer is deposited and patterned on the second terminal to define second terminal contacts of the semiconductor devices.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: August 24, 1999
    Assignee: Motorola, Inc.
    Inventors: Saied N. Tehrani, Kumar Shiralagi, Herbert Goronkin
  • Patent number: 5940319
    Abstract: An improved and novel MRAM device with magnetic memory elements and circuitry for controlling magnetic memory elements is provided. The circuitry, for example, transistor (12a) having a gate (17a), a drain (18) and a source (16a) is integrated on a substrate (11) and coupled to a magnetic memory element (43) on the circuitry through a plug conductor (19a) and a conductor line (45). The circuitry is fabricated first under the CMOS process and then magnetic memory elements (43, 44). Digit line (29) and bit line (48) are placed under and on top of magnetic memory element (43), respectively, and enabled to access magnetic memory element (43). These lines are enclosed by a high permeability layer (31, 56, 58) excluding a surface facing magnetic memory element (43), which shields and focuses a magnetic field toward magnetic memory element (43).
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: August 17, 1999
    Assignee: Motorola, Inc.
    Inventors: Mark Durlam, Gloria Kerszykowski, Jon Slaughter, Theodore Zhu, Eugene Chen, Saied N. Tehrani, Kelly W. Kyler
  • Patent number: 5920500
    Abstract: A magnetic random access memory (10) has a plurality of stacked memory cells on semiconductor substrate (11), each cell basically having a portion of magnetic material (12), a word line (13), and sense line (14). Upper sense line (22) is electrically coupled to lower sense line (12) via conductor line (23) with ohmic contacts. In order to read and store states in the memory cell, lower and upper word lines (13, 18) are activated, thereby total magnetic field is applied to portion of magnetic material (11). This stacked memory structure allows magnetic random access memory (10) to integrate more memory cells on semiconductor substrate (11).
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: July 6, 1999
    Assignee: Motorola, Inc.
    Inventors: Saied N. Tehrani, Xiaodong T. Zhu, Eugene Chen, Herbert Goronkin
  • Patent number: 5917749
    Abstract: A low switching field multi-state, multi-layer magnetic memory cell including two layers of magnetic material stacked in parallel, overlying relationship and separated by a layer of non-magnetic material so as to form a portion of a multi-layer magnetic memory cell. The two layers of magnetic material being formed so that the width is less than the length and less than a width of magnetic domain walls within the two layers of magnetic material, setting a shape anisotropy easy axis along the length thereof. At least one of the two layers of magnetic material having a magnetic anisotropy generally parallel to the width of the layers of magnetic material.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: June 29, 1999
    Assignee: Motorola, Inc.
    Inventors: Eugene Chen, Saied N. Tehrani