Patents by Inventor Salah Boussaad

Salah Boussaad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11279651
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including an oxide of zirconium. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability. The dielectric layer (e.g., of or including an oxide of Zr) may be sputter-deposited so as to have a monoclinic phase in order to improve thermal stability.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 22, 2022
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Publication number: 20220064060
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including an oxide of zirconium. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability. The dielectric layer (e.g., of or including an oxide of Zr) may be sputter-deposited so as to have a monoclinic phase in order to improve thermal stability.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Applicant: GUARDIAN GLASS, LLC
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Publication number: 20210147289
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including an oxide of zirconium. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability. The dielectric layer (e.g., of or including an oxide of Zr) may be sputter-deposited so as to have a monoclinic phase in order to improve thermal stability.
    Type: Application
    Filed: August 31, 2020
    Publication date: May 20, 2021
    Applicant: GUARDIAN GLASS, LLC
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Patent number: 10787385
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including an oxide of zirconium. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability. The dielectric layer (e.g., of or including an oxide of Zr) may be sputter-deposited so as to have a monoclinic phase in order to improve thermal stability.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 29, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yongli Xu, Salah Boussaad, Jingyu Lao
  • Patent number: 10759693
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including an oxide of zirconium. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability. The dielectric layer (e.g., of or including an oxide of Zr) may be sputter-deposited so as to have a monoclinic phase in order to improve thermal stability.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: September 1, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Patent number: 10752541
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including at least one of: (a) an oxide of silicon and zirconium, (b) an oxide of zirconium, and (c) an oxide of silicon. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value).
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 25, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Patent number: 10752540
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). The provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver in a low-E coating has effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). One or more such crystalline, or substantially crystalline, layers may be provided under one or more corresponding IR reflecting layers comprising silver.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: August 25, 2020
    Assignee: Guardian Glass, LLC
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Publication number: 20200255330
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including an oxide of zirconium. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability. The dielectric layer (e.g., of or including an oxide of Zr) may be sputter-deposited so as to have a monoclinic phase in order to improve thermal stability.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 13, 2020
    Applicant: GUARDIAN GLASS, LLC
    Inventors: Yongli XU, Salah BOUSSAAD, Jingyu LAO
  • Publication number: 20200255331
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). The provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver in a low-E coating has effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). One or more such crystalline, or substantially crystalline, layers may be provided under one or more corresponding IR reflecting layers comprising silver.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 13, 2020
    Applicant: Guardian Glass, LLC
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Patent number: 10640418
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including at least one of: (a) an oxide of silicon and zirconium, (b) an oxide of zirconium, and (c) an oxide of silicon. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: May 5, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Publication number: 20200109082
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including an oxide of zirconium. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability. The dielectric layer (e.g., of or including an oxide of Zr) may be sputter-deposited so as to have a monoclinic phase in order to improve thermal stability.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 9, 2020
    Applicant: GUARDIAN GLASS, LLC
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Publication number: 20200079686
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including at least one of: (a) an oxide of silicon and zirconium, (b) an oxide of zirconium, and (c) an oxide of silicon. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability.
    Type: Application
    Filed: March 18, 2019
    Publication date: March 12, 2020
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Patent number: 10570057
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). The provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver in a low-E coating has effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). One or more such crystalline, or substantially crystalline, layers may be provided under one or more corresponding IR reflecting layers comprising silver.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 25, 2020
    Assignee: GUARDIAN GLASS, LLC.
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Publication number: 20200017405
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including at least one of: (a) an oxide of silicon and zirconium, (b) an oxide of zirconium, and (c) an oxide of silicon. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value).
    Type: Application
    Filed: December 14, 2018
    Publication date: January 16, 2020
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Publication number: 20200017402
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). The provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver in a low-E coating has effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). One or more such crystalline, or substantially crystalline, layers may be provided under one or more corresponding IR reflecting layers comprising silver.
    Type: Application
    Filed: May 22, 2019
    Publication date: January 16, 2020
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Patent number: 10301215
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). The provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver in a low-E coating has effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). One or more such crystalline, or substantially crystalline, layers may be provided under one or more corresponding IR reflecting layers comprising silver.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 28, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Patent number: 8668980
    Abstract: The present disclosure relates generally to filled polyimides that can be used in films and articles comprising the films. The films are useful in coverlay applications and have advantageous optical properties. The present disclosure also relates to blends of polyimide precursor, polyacrylonitrile, and cellulosic polymer which can be used to obtain the filled polyimides.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: March 11, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Salah Boussaad, Gloria T. Worrell
  • Patent number: 8546489
    Abstract: Provided are filled polyimides that can be used in films and articles comprising the films. The films are useful in coverlay applications and have advantageous optical properties. Also provided are blends of polyimide precursor, polyacrylonitrile, and cellulosic polymer which can be used to obtain the filled polyimides.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 1, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Salah Boussaad, Gloria T. Worrell
  • Publication number: 20130004762
    Abstract: The present disclosure relates to a method of manufacturing of a glass coated metal product. This invention also relates to a coated metallic substrate material that is suitable for manufacturing flexible solar cells and other articles in which a passivated stainless steel surface is desirable.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 3, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: SALAH BOUSSAAD, DAMIEN FRANCIS REARDON
  • Patent number: 8333900
    Abstract: Described is a method for the selective etching of single walled carbon nanotubes with CO2 where nanotubes of small diameters are removed.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 18, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Salah Boussaad, Frank M. Pellicone, Joseph Menezes