Patents by Inventor Sam Ziqun Zhao

Sam Ziqun Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170110384
    Abstract: In embodiments described herein, an integrated circuit (IC) package is provided. The IC package may include a substrate, an IC die, and a heat spreader. The IC die may have opposing first and second surfaces, where the first surface of the IC die is coupled to a surface of the substrate. The heat spreader may have a surface coupled to the second surface of the IC die by a thermal interface (TI) material. The surface of the heat spreader may have a micro-recess which may include a micro-channel or a micro-dent to direct a flow of TI material towards or away from a predetermined area of the second surface of the IC die based on temperatures of the substrate, the IC die, and/or the heat spreader.
    Type: Application
    Filed: October 30, 2015
    Publication date: April 20, 2017
    Applicant: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Rezaur Rahman Khan
  • Patent number: 9618560
    Abstract: An apparatus and methods are provided that more accurately detect the onset of thermal runaway in a device and timely control it. According to one embodiment, changes in stand-by current and temperature of a transistor device are measured and are used to be compared to some thresholds to trigger the device to respond before the onset thermal runaway. According to another embodiment, stand-by current is measured and is compared to some thresholds to trigger the device to respond before the onset thermal runaway.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: April 11, 2017
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Sam Ziqun Zhao
  • Patent number: 9612871
    Abstract: Embodiments of the present invention are directed to a wireless resource borrowing environment enabled by a wireless bus comprising a plurality of wireless-enabled components (WECs). In an embodiment, the WECs use the wireless bus to share resource information (including resource availability information) among each others. For example, a WEC may share with other WECs information regarding its processing and memory resources. The WEC may then use the shared resource information to identify resources at other WECs that it may borrow to perform certain tasks. In an embodiment, resource borrowing is performed according to a cost-based method which optimizes resource borrowing according to a cost function. The cost function may be designed to optimize resource borrowing according to any combination of one or more factors, including power consumption, processing speed, delay, interference, error rate, reliability, load at the lender WEC, computing capability at the lender WEC, etc.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: April 4, 2017
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Ahmadreza (Reza) Rofougaran, Arya Reza Behzad, Sam Ziqun Zhao, Jesus Alfonso Castaneda, Michael Boers
  • Patent number: 9570420
    Abstract: Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: February 14, 2017
    Assignee: Broadcom Corporation
    Inventors: Jesus Alfonso Castaneda, Arya Reza Behzad, Ahmadreza Rofougaran, Sam Ziqun Zhao, Michael Boers
  • Patent number: 9548251
    Abstract: A semiconductor package may include a substrate, and a semiconductor interposer having a cavity and a plurality of through semiconductor vias. The semiconductor interposer is situated over the substrate. An intra-interposer die is disposed within the cavity of the semiconductor interposer. A thermally conductive adhesive is disposed within the cavity and contacts the intra-interposer die. Additionally, a top die is situated over the semiconductor interposer. In one implementation, the semiconductor interposer is a silicon interposer. In another implementation, the semiconductor interposer is flip-chip mounted to the substrate such that the intra-interposer die disposed within the cavity faces the substrate. In yet another implementation, the cavity in the semiconductor interposer may extend from a top surface of the semiconductor interposer to a bottom surface of the semiconductor interposer and a thermal interface material may be disposed between the intra-interposer die and the substrate.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: January 17, 2017
    Assignee: Broadcom Corporation
    Inventors: Rezaur Rahman Khan, Sam Ziqun Zhao, Pieter Vorenkamp, Kevin Kunzhong Hu, Sampath K. V. Karikalan, Xiangdong Chen
  • Publication number: 20170011993
    Abstract: Semiconductor devices and manufacturing methods are provided for using a Recon interposer that provides a high density interface between the active semiconductor die and the semiconductor substrate and also provides the pitch fan-out. For example, a circuit assembly includes a silicon pad layer including a plurality of metal pads, each metal pad configured to receive a corresponding bump of a plurality of bumps. The circuit assembly further includes an oxide layer disposed on the silicon pad layer and an interposer dielectric layer disposed on the oxide layer. The interposer dielectric layer includes a plurality of routing traces that connect a top surface of the redistribution layer to a bottom surface of the interposer dielectric layer.
    Type: Application
    Filed: July 8, 2016
    Publication date: January 12, 2017
    Applicant: Broadcom Corporation
    Inventors: Sam Ziqun ZHAO, Sam Komarapalayam Karikalan, Edward Law, Rezaur Rahman Khan, Pieter Vorenkamp
  • Publication number: 20170003339
    Abstract: An apparatus and methods are provided that more accurately detect the onset of thermal runaway in a device and timely control it. According to one embodiment, changes in stand-by current and temperature of a transistor device are measured and are used to be compared to some thresholds to trigger the device to respond before the onset thermal runaway. According to another embodiment, stand-by current is measured and is compared to some thresholds to trigger the device to respond before the onset thermal runaway.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 5, 2017
    Applicant: Broadcom Corporation
    Inventor: Sam Ziqun ZHAO
  • Publication number: 20160308042
    Abstract: Semiconductor devices and manufacturing methods are provided for making channel and gate lengths independent from lithography. Also, semiconductor devices and manufacturing methods are provided for increasing resistivity between drain and channel to allow for higher voltage operation. For example, a semiconductor device includes a first doped layer implanted in a semiconductor substrate forming one of a source or a drain and a gate metal layer disposed over the first doped layer. The semiconductor device further includes a second doped layer disposed over the gate metal forming the other the source or the drain, where the first doped layer, the gate metal layer and the second doped layer form a vertical stack of layers of the semiconductor device. The semiconductor device further includes a conduction channel formed in a trench that extends vertically through the vertical stack of layers and terminates at the semiconductor substrate.
    Type: Application
    Filed: June 27, 2016
    Publication date: October 20, 2016
    Applicant: Broadcom Corporation
    Inventors: Sam Ziqun ZHAO, Frank Hui
  • Patent number: 9472485
    Abstract: Flip chip packages are described that include two or more thermal interface materials (TIMs). A die is mounted to a substrate by solder bumps. A first TIM is applied to the die, and has a first thermal resistance. A second TIM is applied to the die and/or the substrate, and has a second thermal resistance that is greater than the first thermal resistance. An open end of a heat spreader lid is mounted to the substrate such that the die is positioned in an enclosure formed by the heat spreader lid and substrate. The first TIM and the second TIM are each in contact with an inner surface of the heat spreader lid. A ring-shaped stiffener may surround the die and be connected between the substrate and heat spreader lid by the second TIM.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 18, 2016
    Assignee: Broadcom Corporation
    Inventors: Mehdi Saeidi, Sam Ziqun Zhao
  • Patent number: 9459921
    Abstract: Disclosed herein are systems, apparatuses, and methods for creating a system of wireless-enabled components (WECs). Such a system includes a server and a plurality of wireless-enabled component (WECs). Each WEC includes a functional resource (e.g., a processing resource and/or a memory resource) and is configured for wireless communication with the server and one or more other WECs. A first WEC is configured to wirelessly upload, to the server, an availability of the functional resource of the first WEC. The first WEC is further configured to wirelessly download, from the server, a linking resource for linking with one or more of the plurality of WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips of multiple devices.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: October 4, 2016
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Arya Reza Behzad, Michael Boers, Jesus Alfonso Castaneda, Sam Ziqun Zhao
  • Patent number: 9431371
    Abstract: There are disclosed herein various implementations of semiconductor packages including a bridge interposer. One exemplary implementation includes a first active die having a first portion situated over the bridge interposer, and a second portion not situated over the bridge interposer. The semiconductor package also includes a second active die having a first portion situated over the bridge interposer, and a second portion not situated over the bridge interposer. The second portion of the first active die and the second portion of the second active die include solder balls mounted on a package substrate, and are configured to communicate electrical signals to the package substrate utilizing the solder balls and without utilizing through-semiconductor vias (TSVs).
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: August 30, 2016
    Assignee: Broadcom Corporation
    Inventors: Sampath K. Karikalan, Sam Ziqun Zhao, Kevin Kunzhong Hu, Rezaur Rahman Khan, Pieter Vorenkamp, Xiangdong Chen
  • Patent number: 9431370
    Abstract: Systems, apparatuses, and methods provided for semiconductor devices and integrated circuit (IC) packages that include compliant dielectric layers. In a through silicon via interposer or substrate, a compliant dielectric material may be added to a surface of silicon material body to form a compliant dielectric layer. The compliant dielectric layer provides a thermal buffer and a stress buffer for a resulting IC package. The compliant dielectric material may be selected such that the coefficient of thermal expansion of the compliant dielectric material approximately matches the coefficient of thermal expansion of the circuit board on which the IC package is mounted. The compliant dielectric material may be selected such that it has a deformability that is greater than the silicon material body. Multiple sub-layers of compliant dielectric material may be used.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: August 30, 2016
    Assignee: Broadcom Corporation
    Inventors: Rezaur Rahman Khan, Sam Ziqun Zhao
  • Patent number: 9406793
    Abstract: Semiconductor devices and manufacturing methods are provided for making channel and gate lengths independent from lithography. Also, semiconductor devices and manufacturing methods are provided for increasing resistivity between drain and channel to allow for higher voltage operation. For example, a semiconductor device includes a first doped layer implanted in a semiconductor substrate forming one of a source or a drain and a gate metal layer disposed over the first doped layer. The semiconductor device further includes a second doped layer disposed over the gate metal forming the other the source or the drain, where the first doped layer, the gate metal layer and the second doped layer form a vertical stack of layers of the semiconductor device. The semiconductor device further includes a conduction channel formed in a trench that extends vertically through the vertical stack of layers and terminates at the semiconductor substrate.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: August 2, 2016
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Frank Hui
  • Patent number: 9406636
    Abstract: An integrated circuit (IC) package includes an IC die having a first surface and a second surface opposite of the first surface. The IC package includes first contact members coupled to the second surface of the IC die. The IC package includes a bottom substrate having a first surface and a second surface opposite of the first surface, where the first surface of the bottom substrate is coupled to the second surface of the IC die via the first contact members. The IC package includes an interposer substrate coupled to the first surface of the IC die via an adhesive material, where the adhesive material is disposed on at least a surface of the interposer substrate. The IC package includes second contact members coupled along a periphery of the interposer substrate, where the interposer substrate is coupled to the first surface of the bottom substrate via the second contact members.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: August 2, 2016
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Rezaur Rahman Khan
  • Patent number: 9390993
    Abstract: A semiconductor package includes a semiconductor unit containing an active circuitry layer. The semiconductor package also includes a plurality of bonding pads on the active circuitry layer, which are configured to be connected to corresponding external conductive connectors. The semiconductor package also includes a protective sealant coating filling grooved edges of the active circuitry layer. The protective sealant coating contains an exterior wafer-singulated surface.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: July 12, 2016
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Galen Kirkpatrick, Edward Law, Reza Khan, Ming Wang Sze
  • Publication number: 20160190057
    Abstract: Various examples are provided for interconnection structures for molded IC packages. In one example, among others, an IC package includes a substrate and an interposer. A plurality of conductive elements provide physical and electrical contact between a surface of the substrate and a surface of the interposer. A standoff element disposed between the surfaces of the substrate and interposer provides a minimum spacing between the surfaces of the substrate and interposer. In some implementations, a standoff element is disposed between an IC die disposed on the surface of the substrate and the surface of the interposer. In another example, a method includes coupling conductive elements to a surface of an interposer, attaching a standoff element, coupling the conductive elements to a surface of a substrate, and forming an embedded layer between the interposer and substrate. The standoff element defines a minimum gap between the interposer and the substrate.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 30, 2016
    Applicant: BROADCOM CORPORATION
    Inventors: Sam Ziqun Zhao, Rezaur Rahman Khan
  • Publication number: 20160155728
    Abstract: An exemplary implementation of the present disclosure includes a stacked package having a top die from a top reconstituted wafer situated over a bottom die from a bottom reconstituted wafer. The top die and the bottom die are insulated from one another by an insulation arrangement. The top die and the bottom die are also interconnected through the insulation arrangement. The insulation arrangement can include a top molding compound that flanks the top die and a bottom molding compound that flanks the bottom die. The top die and the bottom die can be interconnected through at least the, top molding compound. Furthermore, the top die and the bottom die can be interconnected through a conductive via that extends within the insulation arrangement.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Sam Ziqun ZHAO, Rezaur Rahman KHAN, Pieter VORENKAMP, Sampath K.V. KARIKALAN, Kevin Kunzhong HU, Xiangdong CHEN
  • Publication number: 20160148890
    Abstract: A method, system, and apparatus for improved IC device packaging is described. In an aspect, an (IC) device package includes an IC die having at one or more contact pads, each contact pad located at a corresponding hotspot on a surface of th28e IC die. The package also includes a thermally conductive interposer which is thermally coupled to the IC die at the contact pads. In another aspect, an underfill material fills a space between the IC die and the interposer. The interposer may also be electrically coupled to the IC die. In an aspect, the interposer and the IC die are coupled through thermal interconnects or “nodules.
    Type: Application
    Filed: February 2, 2016
    Publication date: May 26, 2016
    Applicant: Broadcom Corporation
    Inventors: Rezaur Rahman KHAN, Sam Ziqun ZHAO
  • Patent number: 9318785
    Abstract: Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: April 19, 2016
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Arya Reza Behzad, Sam Ziqun Zhao, Jesus Alfonso Castaneda, Michael Boers
  • Patent number: 9299634
    Abstract: A method, system, and apparatus for improved IC device packaging is described. In an aspect, an (IC) device package includes an IC die having at one or more contact pads, each contact pad located at a corresponding hotspot on a surface of the IC die. The package also includes a thermally conductive interposer which is thermally coupled to the IC die at the contact pads. In another aspect, an underfill material fills a space between the IC die and the interposer. The interposer may also be electrically coupled to the IC die. In an aspect, the interposer and the IC die are coupled through thermal interconnects or “nodules.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: March 29, 2016
    Assignee: Broadcom Corporation
    Inventors: Rezaur Rahman Khan, Sam Ziqun Zhao