Patents by Inventor Sameer Wadhwa

Sameer Wadhwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170059699
    Abstract: An apparatus, such as a pixel sensor for an ultrasonic imaging apparatus, is disclosed. The apparatus includes a first metallization layer coupled to a piezoelectric layer, wherein a first voltage is formed at the first metallization layer in response to an ultrasonic wave reflecting off an item-to-be-imaged (e.g., a user's fingerprint) and propagating through the piezoelectric layer, and wherein the first metallization layer is situated above a substrate; a second metallization layer situated between the first metallization layer and the substrate; and a device configured to apply a second voltage to the second metallization layer to reduce a parasitic capacitance between the first metallization layer and the substrate.
    Type: Application
    Filed: September 1, 2015
    Publication date: March 2, 2017
    Inventors: Lennart Karl-Axel Mathe, Sameer Wadhwa, Lingli Xia
  • Patent number: 9473165
    Abstract: Reducing signal dependence for a reference voltage of a CDAC includes: splitting a decoupling capacitor into a plurality of capacitors smaller in size than a size of the decoupling capacitor; isolating at least one of the plurality of capacitors from a sampling buffer coupled to the reference voltage during a conversion phase; and supplying an appropriate amount of charge needed to replenish charge drawn by capacitors in the CDAC at each conversion step using a charge pump to pump in a dummy charge to the CDAC so that resulting configurations of the CDAC draw substantially similar amount of charge for each code change of the each conversion step.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: October 18, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Seyed Arash Mirhaj, Sameer Wadhwa, Dinesh Jagannath Alladi, Kentaro Yamamoto, Xiaoke Wen, Masoud Ensafdaran, Weihua Chen
  • Publication number: 20160056833
    Abstract: Reducing signal dependence for a reference voltage of a CDAC includes: splitting a decoupling capacitor into a plurality of capacitors smaller in size than a size of the decoupling capacitor; isolating at least one of the plurality of capacitors from a sampling buffer coupled to the reference voltage during a conversion phase; and supplying an appropriate amount of charge needed to replenish charge drawn by capacitors in the CDAC at each conversion step using a charge pump to pump in a dummy charge to the CDAC so that resulting configurations of the CDAC draw substantially similar amount of charge for each code change of the each conversion step.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 25, 2016
    Inventors: Seyed Arash Mirhaj, Sameer Wadhwa, Dinesh Jagannath Alladi, Kentaro Yamamoto, Xiaoke Wen, Masoud Ensafdaran, Weihua Chen
  • Patent number: 8975974
    Abstract: A wide frequency, low voltage oscillator includes multiple delay elements, in which each delay element includes two inverters coupled through a latching element into a differential-type configuration. Two current-source PMOS devices bias the latching element in a high-gain region at low-voltage. By coupling these current-source PMOS devices into the delay elements, the start-up voltage of the latching element is reduced. Each delay element is also biased using a replica bias circuit that scales the supply/control voltage of the oscillator and provides the scaled supply/control voltage to control the lower rail of oscillation amplitude. By coupling the replica bias circuit to the lower rail, the lower rail of the oscillation amplitude follows the changes to the supply/control voltage.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: March 10, 2015
    Assignee: QUALCOMM Incorporated
    Inventor: Sameer Wadhwa
  • Patent number: 8742815
    Abstract: Temperature-independent delay elements and oscillators are disclosed. In one design, an apparatus includes at least one delay element, a bias circuit, and a current source. The delay element(s) receive a charging current from the current source and provide a delay that is dependent on the charging current. Each delay element may be a current-starved delay element. The delay element(s) may be coupled in series to implement a delay line or in a loop to implement an oscillator. The bias circuit controls generation of the charging current based on a function of at least one parameter (e.g., a switching threshold voltage) of the at least one delay element in order to reduce variations in delay with temperature. The current source provides the charging current for the delay element(s) and is controlled by the bias circuit.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 3, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Sameer Wadhwa, Marzio Pedrali-Noy
  • Publication number: 20130342256
    Abstract: Temperature-independent delay elements and oscillators are disclosed. In one design, an apparatus includes at least one delay element, a bias circuit, and a current source. The delay element(s) receive a charging current from the current source and provide a delay that is dependent on the charging current. Each delay element may be a current-starved delay element. The delay element(s) may be coupled in series to implement a delay line or in a loop to implement an oscillator. The bias circuit controls generation of the charging current based on a function of at least one parameter (e.g., a switching threshold voltage) of the at least one delay element in order to reduce variations in delay with temperature. The current source provides the charging current for the delay element(s) and is controlled by the bias circuit.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Inventors: Sameer Wadhwa, Marzio Pedrali-Noy
  • Patent number: 8570108
    Abstract: An injection-locked oscillator circuit includes a master oscillator, a slave oscillator, and an injection lock control circuit. The slave oscillator is decoupled from the master oscillator (for example, due to an unlock condition). When the slave is free running, its oscillating frequency is adjusted (for example, as a function of a supply voltage). After an amount of time, the slave is to be relocked to the master (for example, due the unlock condition no longer being present). The slave oscillating frequency is made to be slightly lower than the master oscillating frequency. The slave is then only recoupled to the master upon detection of an opposite-phase condition between the master oscillator output signal and the slave oscillator output signal. By only recoupling the slave to the master during opposite-phase conditions, frequency overshoots in the slave oscillating frequency are avoided that may otherwise occur were the recoupling done during in-phase conditions.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: October 29, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Ashwin Ragunathan, Marzio Pedrali-Noy, Sameer Wadhwa
  • Patent number: 8531172
    Abstract: Power efficient power supply regulator circuits are disclosed. The circuits are configured to modify their overhead current according to current load. This is particularly advantageous for use in display devices with widely varying current loads. Such displays include bi-stable displays, such as interferometric modulation displays, LCD displays, and DMD displays.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: September 10, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Sameer Wadhwa
  • Publication number: 20130229238
    Abstract: A wide frequency, low voltage oscillator includes multiple delay elements, in which each delay element includes two inverters coupled through a latching element into a differential-type configuration. Two current-source PMOS devices bias the latching element in a high-gain region at low-voltage. By coupling these current-source PMOS devices into the delay elements, the start-up voltage of the latching element is reduced. Each delay element is also biased using a replica bias circuit that scales the supply/control voltage of the oscillator and provides the scaled supply/control voltage to control the lower rail of oscillation amplitude. By coupling the replica bias circuit to the lower rail, the lower rail of the oscillation amplitude follows the changes to the supply/control voltage.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: QUALCOMM Incorporated
    Inventor: Sameer Wadhwa
  • Publication number: 20130106390
    Abstract: A curvature-compensated band-gap voltage reference circuit includes an operational amplifier and a high-frequency gain stage coupled to an output of the operational amplifier. The circuit also includes an electronic device and a matching circuit.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Applicant: QUALCOMM Incorporated
    Inventor: Sameer Wadhwa
  • Patent number: 8380138
    Abstract: Closed-loop techniques for adjusting the duty cycle of a cyclical signal, e.g., a clock signal, to approach a target value. In an exemplary embodiment, a charge pump is coupled to a charge and sample module, which drives a de-skew circuit in a negative feedback loop. The charge and sample module couples the charge pump to the integration capacitor during two of four successive phases, and also couples the integration capacitor to sampling capacitors during the other two of the four successive phases. The voltages across the sampling capacitors may be used to control the de-skew circuit, which adjusts the duty cycle of a cyclical signal to be adjusted.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: February 19, 2013
    Assignee: Qualcomm Incorporated
    Inventors: Sameer Wadhwa, Marzio Pedrali-Noy
  • Publication number: 20130033331
    Abstract: An injection-locked oscillator circuit includes a master oscillator, a slave oscillator, and an injection lock control circuit. The slave oscillator is decoupled from the master oscillator (for example, due to an unlock condition). When the slave is free running, its oscillating frequency is adjusted (for example, as a function of a supply voltage). After an amount of time, the slave is to be relocked to the master (for example, due the unlock condition no longer being present). The slave oscillating frequency is made to be slightly lower than the master oscillating frequency. The slave is then only recoupled to the master upon detection of an opposite-phase condition between the master oscillator output signal and the slave oscillator output signal. By only recoupling the slave to the master during opposite-phase conditions, frequency overshoots in the slave oscillating frequency are avoided that may otherwise occur were the recoupling done during in-phase conditions.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: QUALCOMM Incorporated
    Inventors: Ashwin RAGHUNATHAN, Marzio Pedrali-Noy, Sameer Wadhwa
  • Patent number: 8362848
    Abstract: A supply-regulated VCO exhibits reduced or no supply sensitivity peaking. The VCO includes an oscillator whose supply current is regulated to control the oscillating frequency of the oscillator. A VCO input signal controls the supply current so that there is a relationship between the input signal and the oscillator output frequency. Power supply noise that might otherwise affect oscillator operation is shunted from a supply current input lead of the oscillator to ground by a bypass capacitor. In one example, an auxiliary circuit supplies an auxiliary supply current to the oscillator, thereby reducing the amount of supply current a supply regulation control loop circuit must supply. In another example, a supply regulation control loop circuit supplies a control current to a main oscillator, but the bypass capacitor is not coupled to this oscillator but rather is coupled to a slave oscillator that is injection locked to the main oscillator.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 29, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Ashwin Raghunathan, Marzio Pedrali-Noy, Sameer Wadhwa
  • Patent number: 8330511
    Abstract: A charge pump includes an UP current mirror and a DN current mirror. The UP current mirror is controlled by an input UP signal and supplies charge onto an output node. The DN current mirror is controlled by an input DN signal and draws charge from the output node. The input UP and DN signals may be received from a phase detector in a Phase-Locked Loop (PLL). To prevent disturbances on bias nodes of the UP and DN current mirrors that otherwise might occur, replica circuits of portions of the UP and DN current mirrors are provided. Each replica circuit is coupled to a bias node of a corresponding current mirror, but is controlled by an input signal of opposite polarity to the input signal that controls the current mirror so that the replica circuit creates disturbances that tend to counteract disturbances created by switching of the current mirror.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: December 11, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Ashwin Raghunathan, Sameer Wadhwa, Marzio Pedrali-Noy
  • Patent number: 8305056
    Abstract: A low drop-out (LDO) voltage regulator with a wide bandwidth power supply rejection ratio (PSRR) is described. In one aspect, the LDO voltage regulator includes two individual voltage regulator circuit stages. A first stage voltage regulator circuit output is at an intermediate voltage (VINT) between an input supply voltage (VDD) and a final regulated output voltage (VREG). A second stage voltage regulator circuit output is at the final regulated output voltage (VREG) and is optimized for noise-sensitive analog circuits across a wide operating bandwidth. The first stage voltage regulator circuit has a zero frequency while the second stage voltage regulator circuit has a matching pole frequency to minimize the AC response from VDD to VREG across all frequencies.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: November 6, 2012
    Assignee: Qualcomm Incorporated
    Inventor: Sameer Wadhwa
  • Patent number: 8299774
    Abstract: Power efficient power supply regulator circuits are disclosed. The circuits are configured to modify their overhead current according to current load. This is particularly advantageous for use in display devices with widely varying current loads. Such displays include bi-stable displays, such as interferometric modulation displays, LCD displays, and DMD displays.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: October 30, 2012
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventor: Sameer Wadhwa
  • Publication number: 20120256693
    Abstract: A supply-regulated VCO exhibits reduced or no supply sensitivity peaking. The VCO includes an oscillator whose supply current is regulated to control the oscillating frequency of the oscillator. A VCO input signal controls the supply current so that there is a relationship between the input signal and the oscillator output frequency. Power supply noise that might otherwise affect oscillator operation is shunted from a supply current input lead of the oscillator to ground by a bypass capacitor. In one example, an auxiliary circuit supplies an auxiliary supply current to the oscillator, thereby reducing the amount of supply current a supply regulation control loop circuit must supply. In another example, a supply regulation control loop circuit supplies a control current to a main oscillator, but the bypass capacitor is not coupled to this oscillator but rather is coupled to a slave oscillator that is injection locked to the main oscillator.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Ashwin Raghunathan, Marzio Pedrali-Noy, Sameer Wadhwa
  • Publication number: 20110254828
    Abstract: Power efficient power supply regulator circuits are disclosed. The circuits are configured to modify their overhead current according to current load. This is particularly advantageous for use in display devices with widely varying current loads. Such displays include bi-stable displays, such as interferometric modulation displays, LCD displays, and DMD displays.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 20, 2011
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventor: Sameer Wadhwa
  • Publication number: 20110254615
    Abstract: A charge pump includes an UP current mirror and a DN current mirror. The UP current mirror is controlled by an input UP signal and supplies charge onto an output node. The DN current mirror is controlled by an input DN signal and draws charge from the output node. The input UP and DN signals may be received from a phase detector in a Phase-Locked Loop (PLL). To prevent disturbances on bias nodes of the UP and DN current mirrors that otherwise might occur, replica circuits of portions of the UP and DN current mirrors are provided. Each replica circuit is coupled to a bias node of a corresponding current mirror, but is controlled by an input signal of opposite polarity to the input signal that controls the current mirror so that the replica circuit creates disturbances that tend to counteract disturbances created by switching of the current mirror.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Ashwin Raghunathan, Sameer Wadhwa, Marzio Pedrali-Noy
  • Patent number: 7977931
    Abstract: Power efficient power supply regulator circuits are disclosed. The circuits are configured to modify their overhead current according to current load. This is particularly advantageous for use in display devices with widely varying current loads. Such displays include bi-stable displays, such as interferometric modulation displays, LCD displays, and DMD displays.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 12, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Sameer Wadhwa