Patents by Inventor Samir Chaudhry
Samir Chaudhry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10587114Abstract: A bi-directional ESD protection device for an RF circuit that utilizes two pre-driver FETs to reliably maintain the gate voltage of a ggNMOS-type main transistor the lowest applied voltage (e.g., 0V) in order to maximize the main transistor's drain-to-source breakdown voltage, which determines the trigger voltage of the ESD protection device. One pre-driver FET couples the main transistor's gate to ground during positive voltage input signal phases, and the other pre-driver FET couples the main transistor's gate to the input signal path during negative voltage input signal phases. While the amplitude of the input signals remains below the main transistor's trigger voltage, the main transistor remains completely turned off, whereby the input signals are passed to I/O circuitry with minimal interference. Whenever the input signal exceeds the trigger voltage, the main transistor turns on to shunt the over-voltage/current to ground, thereby protecting the I/O circuitry.Type: GrantFiled: May 16, 2017Date of Patent: March 10, 2020Assignee: Newport Fab, LLCInventors: Roda Kanawati, Samir Chaudhry
-
Patent number: 10469035Abstract: A single-stage amplifier circuit includes first and second transistors (e.g., BJTs or FETs) connected in parallel between the amplifier's input and output nodes. The first and second transistors are configured differently using known fabrication techniques such that a (first) cutoff frequency of the first transistor is at least 1.5 times greater than a (second) cutoff frequency of the second transistor, and such that a ratio of the respective cutoff frequencies produces a significant cancellation of second derivative transconductance (Gm?) in the amplifier output signal, whereby the amplifier achieves significantly improved IIP3. Alternatively, the amplifier is configured using MOSFETs having respective different channel lengths to achieve the desired cutoff frequency ratio.Type: GrantFiled: March 16, 2018Date of Patent: November 5, 2019Assignee: Newport Fab, LLCInventors: Jie Zheng, Samir Chaudhry, Edward J. Preisler
-
Publication number: 20190288648Abstract: A single-stage amplifier circuit includes first and second transistors (e.g., BJTs or FETs) connected in parallel between the amplifier's input and output nodes. The first and second transistors are configured differently using known fabrication techniques such that a (first) cutoff frequency of the first transistor is at least 1.5 times greater than a (second) cutoff frequency of the second transistor, and such that a ratio of the respective cutoff frequencies produces a significant cancellation of second derivative transconductance (Gm?) in the amplifier output signal, whereby the amplifier achieves significantly improved IIP3. Alternatively, the amplifier is configured using MOSFETs having respective different channel lengths to achieve the desired cutoff frequency ratio.Type: ApplicationFiled: March 16, 2018Publication date: September 19, 2019Inventors: Jie Zheng, Samir Chaudhry, Edward J. Preisler
-
Patent number: 10325833Abstract: A semiconductor structure includes a plurality of source/drain regions, a plurality of channel/body regions located between the source/drain regions, and a polysilicon gate structure located over the plurality of channel/body regions. The polysilicon gate structure includes a plurality of polysilicon gate fingers, each extending over a corresponding one of the channel/body regions. Each polysilicon gate finger includes first and second rectangular portions that extend in parallel with a first axis, and a connector portion that introduces an offset between the first and second rectangular portions along the first axis. This offset results in each source/drain region having a first section with a first length, and a second section with a second length, greater than the first length. A single column of contacts are provided in the first section of each source/drain region, and multiple columns of contacts are provided in the second section of each source/drain region.Type: GrantFiled: February 20, 2018Date of Patent: June 18, 2019Assignee: Newport Fab, LLCInventors: Roda Kanawati, Paul D. Hurwitz, Samir Chaudhry
-
Publication number: 20180337170Abstract: A bi-directional ESD protection device for an RF circuit that utilizes two pre-driver FETs to reliably maintain the gate voltage of a ggNMOS-type main transistor the lowest applied voltage (e.g., 0V) in order to maximize the main transistor's drain-to-source breakdown voltage, which determines the trigger voltage of the ESD protection device. One pre-driver FET couples the main transistor's gate to ground during positive voltage input signal phases, and the other pre-driver FET couples the main transistor's gate to the input signal path during negative voltage input signal phases. While the amplitude of the input signals remains below the main transistor's trigger voltage, the main transistor remains completely turned off, whereby the input signals are passed to I/O circuitry with minimal interference. Whenever the input signal exceeds the trigger voltage, the main transistor turns on to shunt the over-voltage/current to ground, thereby protecting the I/O circuitry.Type: ApplicationFiled: May 16, 2017Publication date: November 22, 2018Inventors: Roda Kanawati, Samir Chaudhry
-
Patent number: 7911006Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.Type: GrantFiled: November 2, 2009Date of Patent: March 22, 2011Assignee: Agere Systems Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
-
Patent number: 7700432Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. The integrated circuit structure includes a semiconductor layer with a major surface and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. The integrated circuit includes a capacitor having a bottom plate, dielectric layer and a top plate. In an associated method of manufacture, a first device region, is formed on a semiconductor layer. A field-effect transistor gate region is formed over the first device region. A capacitor comprising top and bottom layers and a dielectric layer is formed on the semiconductor layer.Type: GrantFiled: January 9, 2009Date of Patent: April 20, 2010Assignee: Agere Systems Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
-
Publication number: 20100044767Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.Type: ApplicationFiled: November 2, 2009Publication date: February 25, 2010Applicant: Agere Systems Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
-
Patent number: 7633118Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.Type: GrantFiled: May 31, 2007Date of Patent: December 15, 2009Assignee: Agere Systems Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
-
Publication number: 20090130810Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. The integrated circuit structure includes a semiconductor layer with a major surface and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. The integrated circuit includes a capacitor having a bottom plate, dielectric layer and a top plate. In an associated method of manufacture, a first device region, is formed on a semiconductor layer. A field-effect transistor gate region is formed over the first device region. A capacitor comprising top and bottom layers and a dielectric layer is formed on the semiconductor layer.Type: ApplicationFiled: January 9, 2009Publication date: May 21, 2009Applicant: Agere Systems Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
-
Patent number: 7491610Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. The integrated circuit structure includes a semiconductor layer with a major surface and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. The integrated circuit includes a capacitor having a bottom plate, dielectric layer and a top plate. In an associated method of manufacture, a first device region. is formed on a semiconductor layer. A field-effect transistor gate region is formed over the first device region. A capacitor comprising top and bottom layers and a dielectric layer is formed on the semiconductor layer.Type: GrantFiled: June 1, 2007Date of Patent: February 17, 2009Assignee: Agere Systems Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
-
Publication number: 20070238243Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.Type: ApplicationFiled: June 1, 2007Publication date: October 11, 2007Inventors: Samir Chaudhry, Paul Layman, John McMacken, J. Thomson, Jack Zhao
-
Publication number: 20070228440Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.Type: ApplicationFiled: May 31, 2007Publication date: October 4, 2007Inventors: Samir Chaudhry, Paul Layman, John McMacken, J. Thomson, Jack Zhao
-
Patent number: 7259048Abstract: An architecture for creating a vertical silicon-on-insulator MOSFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain contact region formed in the surface. A relatively thin single crystalline layer is oriented vertically above the major surface and comprises a first source/drain doped region over which is located a doped channel region, over which is located a second source/drain region. An insulating layer is disposed adjacent said first and said second source/drain regions and said channel region, serving as the insulating material of the SOI device. In another embodiment, insulating material is adjacent only said first and said second source/drain regions. A conductive region is adjacent the channel region for connecting the back side of the channel region to ground, for example, to prevent the channel region from floating.Type: GrantFiled: May 19, 2006Date of Patent: August 21, 2007Assignee: Agere Systems, Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
-
Patent number: 7242056Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.Type: GrantFiled: April 5, 2004Date of Patent: July 10, 2007Assignee: Agere Systems Inc.Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
-
Publication number: 20070111414Abstract: An architecture for creating a vertical silicon-on-insulator MOSFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain contact region formed in the surface. A relatively thin single crystalline layer is oriented vertically above the major surface and comprises a first source/drain doped region over which is located a doped channel region, over which is located a second source/drain region. An insulating layer is disposed adjacent said first and said second source/drain regions and said channel region, serving as the insulating material of the SOI device. In another embodiment, insulating material is adjacent only said first and said second source/drain regions. A conductive region is adjacent the channel region for connecting the back side of the channel region to ground, for example, to prevent the channel region from floating.Type: ApplicationFiled: May 19, 2006Publication date: May 17, 2007Inventors: Samir Chaudhry, Paul Layman, John McMacken, J. Thomson, Jack Zhao
-
Patent number: 7169714Abstract: A method for forming an oxide layer on a vertical, non-planar semiconductor surface provides a low stress oxide layer having a pristine interface characterized by a roughness of less than 3 angstroms. The oxide layer includes a portion that is substantially amorphous and notably dense. The oxide layer is a graded growth oxide layer including a composite of a first oxide portion formed at a relatively low temperature below the viscoelastic temperature of the oxide film and a second oxide portion formed at a relatively high temperature above the viscoelastic temperature of the oxide film. The process for forming the oxide layer includes thermally oxidizing at a first temperature below the viscoelastic temperature of the film, and slowly ramping up the temperature to a second temperature above the viscoelastic temperature of the film and heating at the second temperature.Type: GrantFiled: November 12, 2004Date of Patent: January 30, 2007Assignee: Agere Systems, Inc.Inventors: Samir Chaudhry, Pradip K. Roy
-
Patent number: 7151059Abstract: A reduced feature size MOS transistor and its method of manufacture is disclosed. The present invention reduces short channel effects but does not include an LDD structure In an illustrative embodiment, a MOS transistor has a gate length of 1.25 ?m or less. The exemplary MOS transistor includes a gate oxide that forms a planar and substantially stress free interface with a substrate. As a result of the planarity and substantially stress free nature of the oxide/substrate interface, the incidence of hot carriers, and thereby, deleterious hot carrier effects are reduced. By eliminating the use of the LDD structure, fabrication complexity is reduced and series source-drain resistance is reduced resulting in improved drive current and switching speed.Type: GrantFiled: January 22, 2004Date of Patent: December 19, 2006Assignee: Agere Systems Inc.Inventors: Samir Chaudhry, Sidhartha Sen, Sundar Srinivasan Chetlur, Richard William Gregor, Pradip Kumar Roy
-
Multi-layer inductor formed in a semiconductor substrate and having a core of ferromagnetic material
Patent number: 7132297Abstract: A thin-film multilayer high-Q inductor having a ferromagnetic core and spanning at least three metal layers is formed by forming a plurality of parallel first metal runners on the semiconductor substrate. A plurality of first and second vertical conductive vias are formed in electrical connection with each end of the plurality of metal runners. A plurality of third and fourth conductive vias are formed over the plurality of first and second conductive vias and a plurality of second metal runners are formed interconnecting the plurality of third and fourth conductive vias. The first metal runners and second metal runners are oriented such that one end of a first metal runner is connected to an overlying end of a second metal runner by way of the first and third vertical conductive vias. The other end of the second metal runner is connected to the next metal one runner by way of the second and fourth vertical conductive vias., forming a continuously conductive structure having a generally helical shape.Type: GrantFiled: May 7, 2003Date of Patent: November 7, 2006Assignee: Agere Systems Inc.Inventors: Michelle D. Griglione, Paul Arthur Layman, Mohamed Laradji, J. Ross Thomson, Samir Chaudhry -
Publication number: 20060166429Abstract: An architecture for creating a vertical JFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain doped region formed in the surface. A second doped region forming a channel of different conductivity type than the first region is positioned over the first region. A third doped region is formed over the second doped region having an opposite conductivity type with respect to the second doped region, and forming a source/drain region. A gate is formed over the channel to form a vertical JFET. In an associated method of manufacturing the semiconductor device, a first source/drain region is formed in a semiconductor layer. A field-effect transistor gate region, including a channel and a gate electrode, is formed over the first source/drain region. A second source/drain region is then formed over the channel having the appropriate conductivity type.Type: ApplicationFiled: March 27, 2006Publication date: July 27, 2006Inventors: Samir Chaudhry, Paul Layman, John McMacken, Ross Thomson, Jack Zhao