Patents by Inventor Samir Chaudhry

Samir Chaudhry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6690040
    Abstract: A vertical JFET architecture. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain doped region formed in the surface. A second doped region forming a channel of different conductivity type than the first region is disposed over the first region. A third doped region is formed over the second doped region having an opposite conductivity type with respect to the second doped region, and forming a source/drain region. A gate is formed over the channel to form a vertical JFET.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: February 10, 2004
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 6686604
    Abstract: An architecture for creating multiple operating voltage MOSFETs. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and first and second spaced-apart doped regions formed in the surface. A third doped region forming a channel of different conductivity type than the first region is positioned over the first region. A fourth doped region of a different conductivity and forming a channel is positioned over the second region. The process of creating the gate structure for each of the two transistors allows for the formation of oxide layers of different thickness between the two transistors. The transistors are therefore capable of operating at different operating voltages (including different threshold voltages). Each transistor further includes fifth and sixth layers positioned respectively over the third and fourth regions and having an opposite conductivity type with respect to the third and fourth regions.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: February 3, 2004
    Assignee: Agere Systems Inc.
    Inventors: Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Samir Chaudhry, Jack Qingsheng Zhao
  • Publication number: 20040014303
    Abstract: A method for forming a plurality of MOSFETs wherein each one of the MOSFET has a unique predetermined threshold voltage. A doped well or tub is formed for each MOSFET. A patterned mask is then used to form a material line proximate each semiconductor well, wherein the width of the line is dependent upon the desired threshold voltage for the MOSFET. A tilted ion implantation is performed at an acute angle with respect to the substrate surface such that the ion beam passes through the material line. Thicker lines have a lower transmission coefficient for the ion beam and thus the intensity of the ion beam reaching the adjacent semiconductor well is reduced. By appropriate selection of the line width the dopant density in the well, and thus the final MOSFET threshold voltage, is controllable.
    Type: Application
    Filed: July 14, 2003
    Publication date: January 22, 2004
    Inventors: Paul Arthur Layman, Samir Chaudhry
  • Publication number: 20030235957
    Abstract: A method for forming an oxide layer on a vertical, non-planar semiconductor surface provides a low stress oxide layer having a pristine interface characterized by a roughness of less than 3 angstroms. The oxide layer includes a portion that is substantially amorphous and notably dense. The oxide layer is a graded growth oxide layer including a composite of a first oxide portion formed at a relatively low temperature below the viscoelastic temperature of the oxide film and a second oxide portion formed at a relatively high temperature above the viscoelastic temperature of the oxide film. The process for forming the oxide layer includes thermally oxidizing at a first temperature below the viscoelastic temperature of the film, and slowly ramping up the temperature to a second temperature above the viscoelastic temperature of the film and heating at the second temperature.
    Type: Application
    Filed: June 25, 2002
    Publication date: December 25, 2003
    Inventors: Samir Chaudhry, Pradip K. Roy
  • Patent number: 6667536
    Abstract: A thin-film multi-layer high Q transformer. To form an outer transformer winding a plurality of parallel first level metal runners are formed in a first insulating layer overlying the semiconductor substrate. A plurality of vertical conductive vias are formed in third and fourth insulating layers and in electrical communication with each end of the first level metal runners. A fourth insulating layer is disposed over the third insulating layer and additional vertical conductive vias and a fourth level metal runner are formed therein. Thus, the fourth level metal runners and the intervening vertical conductive vias connect each of the first level metal runners to form a continuously conductive structure having a generally helical shape. The inner winding of the transformer is similarly formed.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: December 23, 2003
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, J. Ross Thomson, Mohamed Laradji, Michelle D. Griglione
  • Publication number: 20030218218
    Abstract: An SRAM cell within a semiconductor device includes p-channel transistors with increased threshold voltages to suppress standby leakage current in the SRAM cell. Existing processing operations already being used to form the semiconductor device, are used to produce the SRAM p-channel devices to have higher threshold voltages than logic p-channel devices also included within the semiconductor device. The processing operations used to form thicker gate oxides for transistors in the I/O portion of the same semiconductor device, may be used to form increased gate oxide thicknesses within the SRAM p-channel transistors. The SRAM p-channel transistors may include a gate oxide that is thicker than the gate oxides of the SRAM n-channel transistors and the logic p-channel transistors. In another embodiment, the gates of the SRAM p-channel transistors may be counterdoped with n-type impurities to produce an effectively greater gate oxide thickness due to poly depletion.
    Type: Application
    Filed: May 21, 2002
    Publication date: November 27, 2003
    Inventors: Samir Chaudhry, Goh Komoriya, William John Nagy, Ranbir Singh
  • Patent number: 6639298
    Abstract: A thin-film multi-layer high Q inductor spanning at least three metal layers is formed by forming a plurality of parallel first metal runners on the semiconductor substrate. A plurality of first and second vertical conductive vias are formed in electrical communications with each end of the plurality of metal runners. A plurality of third and fourth conductive vias are formed over the plurality of first and second conductive vias and a plurality of second metal runners are formed interconnecting the plurality of third and fourth conductive vias. The plurality of first metal runners are in a different vertical than the plurality of second metal runners such that the planes intersect. Thus one end of a first metal runner is connected to an overlying end of a second metal runner by way of the first and third vertical conductive vias. The other end of the second metal runner is connected to the next metal one runner by way of the second and fourth vertical conductive vias.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: October 28, 2003
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, J. Ross Thomson, Mohamed Laradji, Michelle D. Griglione
  • Patent number: 6576521
    Abstract: A NMOSFET semiconductor device is formed having an LDD structure by simultaneous co-implantation of arsenic and phosphorous to form an N− layer. The co-implantation is performed subsequent to the formation of the gate structure and a thin (100 Å-300 Å) gate spacer but prior to the implantation of a highly doped N+ source/drain.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: June 10, 2003
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Sundar S. Chetlur, Hem M. Vaidya
  • Publication number: 20030064567
    Abstract: An architecture for creating a vertical silicon-on-insulator MOSFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain contact region formed in the surface. A relatively thin single crystalline layer is oriented vertically above the major surface and comprises a first source/drain doped region over which is located a doped channel region, over which is located a second source/drain region. An insulating layer is disposed adjacent said first and said second source/drain regions and said channel region, serving as the insulating material of the SOI device. In another embodiment, insulating material is adjacent only said first and said second source/drain regions. A conductive region is adjacent the channel region for connecting the back side of the channel region to ground, for example, to prevent the channel region from floating.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20030064550
    Abstract: A method for forming a plurality of MOSFETs wherein each one of the MOSFET has a unique predetermined threshold voltage. A doped well or tub is formed for each MOSFET. A patterned mask is then used to form a material line proximate each semiconductor well, wherein the width of the line is dependent upon the desired threshold voltage for the MOSFET. A tilted ion implantation is performed at an acute angle with respect to the substrate surface such that the ion beam passes through the material line. Thicker lines have a lower transmission coefficient for the ion beam and thus the intensity of the ion beam reaching the adjacent semiconductor well is reduced. By appropriate selection of the line width the dopant density in the well, and thus the final MOSFET threshold voltage, is controllable.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Paul Arthur Layman, Samir Chaudhry
  • Publication number: 20030060015
    Abstract: An architecture for creating multiple operating voltage MOSFETs. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and first and second spaced-apart doped regions formed in the surface. A third doped region forming a channel of different conductivity type than the first region is positioned over the first region. A fourth doped region of a different conductivity and forming a channel is positioned over the second region. The process of creating the gate structure for each of the two transistors allows for the formation of oxide layers of different thickness between the two transistors. The transistors are therefore capable of operating at different operating voltages (including different threshold voltages). Each transistor further includes fifth and sixth layers positioned respectively over the third and fourth regions and having an opposite conductivity type with respect to the third and fourth regions.
    Type: Application
    Filed: September 21, 2001
    Publication date: March 27, 2003
    Inventors: Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Samir Chaudhry, Jack Qingsheng Zhao
  • Publication number: 20030052365
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region.
    Type: Application
    Filed: September 18, 2001
    Publication date: March 20, 2003
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20030052721
    Abstract: A structure and a process for fabricating a bipolar junction transistor (BJT) that is compatible with the fabrication of a vertical MOSFET is disclosed. In the process, at least three layers of material are formed sequentially on a semiconductor substrate, where the substrate includes a buried collector region for the BJT and a source region for the MOSFET. After the at least three layers are formed on the substrate, two windows or trenches are formed in the layers. The first window terminates at the surface of the silicon substrate where the source region has been formed; the second window terminates at the buried collector region. Both windows are then filled with semiconductor material. For the BJT, the bottom portion of the window is filled with material of a conductivity type matching the conductivity of the buried collector, while the upper region of the semiconductor material is doped the opposite conductivity to form the BJT base.
    Type: Application
    Filed: September 18, 2001
    Publication date: March 20, 2003
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20030047749
    Abstract: An architecture for creating a vertical JFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain doped region formed in the surface. A second doped region forming a channel of different conductivity type than the first region is positioned over the first region. A third doped region is formed over the second doped region having an opposite conductivity type with respect to the second doped region, and forming a source/drain region. A gate is formed over the channel to form a vertical JFET.
    Type: Application
    Filed: September 10, 2001
    Publication date: March 13, 2003
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20030003603
    Abstract: A thin-film multi-layer high Q transformer. To form an outer transformer winding a plurality of parallel first level metal runners are formed in a first insulating layer overlying the semiconductor substrate. A plurality of vertical conductive vias are formed in third and fourth insulating layers and in electrical communication with each end of the first level metal runners. A fourth insulating layer is disposed over the third insulating layer and additional vertical conductive vias and a fourth level metal runner are formed therein. Thus, the fourth level metal runners and the intervening vertical conductive vias connect each of the first level metal runners to form a continuously conductive structure having a generally helical shape. The inner winding of the transformer is similarly formed.
    Type: Application
    Filed: October 5, 2001
    Publication date: January 2, 2003
    Inventors: Samir Chaudhry, Paul Arthur Layman, J. Ross Thomson, Mohamed Laradji, Michelle D. Griglione
  • Publication number: 20030001231
    Abstract: A thin-film multi-layer high Q inductor spanning at least three metal layers is formed by forming a plurality of parallel first metal runners on the semiconductor substrate. A plurality of first and second vertical conductive vias are formed in electrical communications with each end of the plurality of metal runners. A plurality of third and fourth conductive vias are formed over the plurality of first and second conductive vias and a plurality of second metal runners are formed interconnecting the plurality of third and fourth conductive vias. The plurality of first metal runners are in a different vertical than the plurality of second metal runners such that the planes intersect. Thus one end of a first metal runner is connected to an overlying end of a second metal runner by way of the first and third vertical conductive vias. The other end of the second metal runner is connected to the next metal one runner by way of the second and fourth vertical conductive vias.
    Type: Application
    Filed: October 5, 2001
    Publication date: January 2, 2003
    Inventors: Samir Chaudhry, Paul Arthur Layman, J. Ross Thomson, Mohamed Laradji, Michelle D. Griglione
  • Patent number: 6359317
    Abstract: A bipolar vertical PNP transistor compatible with CMOS processing and useful in a complementary BiMOS structure is characterized in that it is devoid of an epitaxial layer and employs a high-energy implanted phosphorus layer to provide N-type substrate isolation.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: March 19, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: Michael S. Carroll, Yih-Feng Chyan, Samir Chaudhry, Tony G. Ivanov, Robert W. Dail, Alan S. Chen
  • Patent number: 6249016
    Abstract: An integrated circuit capacitor includes a first dielectric layer adjacent a substrate and having a trench therein, and a metal plug comprising an upper portion extending upwardly into the trench, and a lower portion disposed in the first dielectric layer. The lower portion has a tapered width which increases in a direction toward the substrate to thereby secure the metal plug in the dielectric layer. Preferably, the upper portion is also tapered. Furthermore, a second dielectric layer is adjacent the metal plug with an upper electrode thereon.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: June 19, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: Samir Chaudhry, Sundar Srinivasan Chetlur, Nace Layadi, Pradip Kumar Roy, Hem M. Vaidya
  • Patent number: 6207510
    Abstract: A method for making an integrated circuit includes the steps of forming a plurality of spaced apart isolation regions in a substrate to define active regions therebetween, forming a first mask, and using the first mask for performing at least one implant in the active regions for defining high voltage active regions for the high voltage transistors. The method further includes the steps of removing the first mask and forming a second mask, and using the second mask for performing only one implant for converting at least one high voltage active region into a low voltage active region for a low voltage transistor. All of the implants needed to define the high voltage transistors are first performed throughout the active regions using the first mask. A separate single implant is then performed using the second mask to convert at least one of the high voltage active regions to a low voltage active region.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: March 27, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Glenn C. Abeln, Robert Alan Ashton, Samir Chaudhry, Alan R. Massengale, Jinghui Ning
  • Patent number: 6204186
    Abstract: A method of making a capacitor includes the steps of forming an interconnection line above a substrate, depositing a first dielectric layer on the interconnection line, and etching a via in the first dielectric layer. The via has a tapered width which increases in a direction toward the substrate. Further, the method includes filling the via with a conductive metal to form a metal plug, and etching a trench in the first dielectric layer around an upper portion of the metal plug. The metal plug has a tapered width which secures it into the dielectric layer. A second dielectric layer is deposited adjacent the metal plug and an upper electrode is deposited on the second dielectric layer. Preferably, a lower electrode is deposited to line the trench and contact the metal plug.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: March 20, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Samir Chaudhry, Sundar Srinivasan Chetlur, Nace Layadi, Pradip Kumar Roy, Hem M. Vaidya