Patents by Inventor Sammy Mok

Sammy Mok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070144841
    Abstract: This invention provides a solution to increase the yield strength and fatigue strength of miniaturized springs, which can be fabricated in arrays with ultra-small pitches. It also discloses a solution to minimize adhesion of the contact pad materials to the spring tips upon repeated contacts without affecting the reliability of the miniaturized springs. In addition, the invention also presents a method to fabricate the springs that allow passage of relatively higher current without significantly degrading their lifetime.
    Type: Application
    Filed: November 2, 2006
    Publication date: June 28, 2007
    Inventors: Fu Chong, Sammy Mok, Erh-Kong Chieh, Roman Milter, Joseph Haemer, David Doan
  • Publication number: 20070057684
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Application
    Filed: November 1, 2006
    Publication date: March 15, 2007
    Inventors: Fu CHONG, Sammy Mok
  • Publication number: 20070046304
    Abstract: Several embodiments of integrated circuit probe card assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Application
    Filed: October 23, 2006
    Publication date: March 1, 2007
    Inventors: Sammy Mok, Fu Chong
  • Patent number: 7137830
    Abstract: This invention provides a solution to increase the yield strength and fatigue strength of miniaturized springs, which can be fabricated in arrays with ultra-small pitches. It also discloses a solution to minimize adhesion of the contact pad materials to the spring tips upon repeated contacts without affecting the reliability of the miniaturized springs. In addition, the invention also presents a method to fabricate the springs that allow passage of relatively higher current without significantly degrading their lifetime.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: November 21, 2006
    Assignee: NanoNexus, Inc.
    Inventors: Syamal Kumar Lahiri, Frank Swiatowiec, Fu Chiung Chong, Sammy Mok, Erh-Kong Chieh, Roman L. Milter, Joseph M. Haemer, Chang-Ming Lin, Yi-Hsing Chen, David Thanh Doan
  • Patent number: 7138818
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: November 21, 2006
    Assignee: NanoNexus, Inc.
    Inventors: Fu Chiung Chong, Sammy Mok
  • Publication number: 20060240690
    Abstract: Several embodiments of stress metal springs are disclosed, which typically comprise a plurality of stress metal layers that are established on a substrate, which are then controllably patterned and partially released from the substrate. An effective rotation angle is typically created in the formed stress metal springs, defining a looped spring structure. The formed springs provide high pitch compliant electrical contacts for a wide variety of interconnection systems, including chip scale semiconductor packages, high density interposer connectors, and probe contactors. Several embodiments of massively parallel interface integrated circuit test assemblies are also disclosed, comprising one or more substrates having stress metal spring contacts, to establish connections between one or more separated integrated circuits on a compliant wafer carrier.
    Type: Application
    Filed: September 1, 2004
    Publication date: October 26, 2006
    Inventors: Sammy Mok, Fu Chong, Roman Milter
  • Patent number: 7126220
    Abstract: This invention provides a solution to increase the yield strength and fatigue strength of miniaturized springs, which can be fabricated in arrays with ultra-small pitches. It also discloses a solution to minimize adhesion of the contact pad materials to the spring tips upon repeated contacts without affecting the reliability of the miniaturized springs. In addition, the invention also presents a method to fabricate the springs that allow passage of relatively higher current without significantly degrading their lifetime.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: October 24, 2006
    Assignee: NanoNexus, Inc.
    Inventors: Syamal Kumar Lahiri, Frank Swiatowiec, Fu Chiung Chong, Sammy Mok, Erh-Kong Chieh, Roman L. Milter, Joseph M. Haemer, Chang-Ming Lin, Yi-Hsing Chen, David Thanh Doan
  • Patent number: 7126358
    Abstract: Several embodiments of integrated circuit probe card assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: October 24, 2006
    Assignee: NanoNexus, Inc.
    Inventors: Sammy Mok, Fu Chiung Chong
  • Publication number: 20060186906
    Abstract: An improved interconnection system is described, such as for electrical contactors and connectors, electronic device or module package assemblies, socket assemblies, and/or probe card assembly systems. An exemplary connector comprises a first connector structure comprising a contactor substrate having a contact surface and a bonding surface, and one or more electrically conductive micro-fabricated spring contacts extending from the probe surface, a second connector structure comprising at least one substrate and having a set of at least one electrically conductive contact pad located on a connector surface and corresponding to the set of spring contacts, and means for movably positioning and aligning the first connector structure and the second connector structure between at least a first position and a second position, such that in at least one position, at least one electrically conductive micro-fabricated spring contact is electrically connected to at least one electrically conductive contact pad.
    Type: Application
    Filed: February 7, 2006
    Publication date: August 24, 2006
    Inventors: W. Bottoms, Fu Chong, Sammy Mok, Douglas Modlin
  • Publication number: 20060119377
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Application
    Filed: January 5, 2006
    Publication date: June 8, 2006
    Inventors: Fu Chong, Sammy Mok
  • Patent number: 7009412
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: March 7, 2006
    Assignee: NanoNexus, Inc.
    Inventors: Fu Chiung Chong, Sammy Mok
  • Publication number: 20050275418
    Abstract: An improved interconnection system and method is described, such as for connectors, socket assemblies and/or probe card systems. An exemplary system comprises a probe card interface assembly (PCIA) for establishing electrical connections to a semiconductor wafer mounted in a prober. The PCIA comprises a motherboard parallel to the semiconductor wafer having an upper surface and an opposing lower planar mounting surface, a reference plane defined by a least three points located between the lower surface of the motherboard and the wafer, at least one component located below the motherboard mounting surface, and a mechanism for adjusting the planarity of the reference plane with respect to the wafer. A probe chip having a plurality of spring probes extending there from is mountable and demountable from the PCIA, without the need for further planarity adjustment. The interconnection structures and methods preferably provide improved fabrication cycles.
    Type: Application
    Filed: May 18, 2005
    Publication date: December 15, 2005
    Inventors: Fu Chong, Andrew Kao, Douglas McKay, Anna Litza, Douglas Modlin, Sammy Mok, Nitin Parekh, Frank Swiatowiec, Zhaohui Shan
  • Patent number: 6917525
    Abstract: Several embodiments of enhanced integrated circuit probe card and package assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: July 12, 2005
    Assignee: NanoNexus, Inc.
    Inventors: Sammy Mok, Fu Chiung Chong, Frank John Swiatowiec, Syamal Kumar Lahiri, Joseph Michael Haemer
  • Publication number: 20050068054
    Abstract: Several embodiments of integrated circuit probe card assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Application
    Filed: July 9, 2004
    Publication date: March 31, 2005
    Inventors: Sammy Mok, Fu Chiung Chong, Frank John Swiatowiec
  • Publication number: 20050051353
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Application
    Filed: August 12, 2004
    Publication date: March 10, 2005
    Inventors: Fu Chong, Sammy Mok
  • Publication number: 20050042932
    Abstract: Several embodiments of integrated circuit probe card assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Application
    Filed: September 27, 2004
    Publication date: February 24, 2005
    Inventors: Sammy Mok, Fu Chong
  • Publication number: 20050026476
    Abstract: Several embodiments of stress metal springs are disclosed, which typically comprise a plurality of stress metal layers that are established on a substrate, which are then controllably patterned and partially released from the substrate. An effective rotation angle is typically created in the formed stress metal springs, defining a looped spring structure. The formed springs provide high pitch compliant electrical contacts for a wide variety of interconnection systems, including chip scale semiconductor packages, high density interposer connectors, and probe contactors. Several embodiments of massively parallel interface integrated circuit test assemblies are also disclosed, comprising one or more substrates having stress metal spring contacts, to establish connections between one or more separated integrated circuits on a compliant wafer carrier.
    Type: Application
    Filed: September 1, 2004
    Publication date: February 3, 2005
    Inventors: Sammy Mok, Fu Chong, Roman Milter
  • Patent number: 6815961
    Abstract: Several embodiments of integrated circuit probe card assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: November 9, 2004
    Assignee: NanoNexus, Inc.
    Inventors: Sammy Mok, Fu Chiung Chong
  • Patent number: 6812718
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel intergrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connection between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabrication spring probes.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: November 2, 2004
    Assignee: NanoNexus, Inc.
    Inventors: Fu Chiung Chong, Sammy Mok
  • Patent number: 6799976
    Abstract: Several embodiments of integrated circuit probe card assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: October 5, 2004
    Assignee: NanoNexus, Inc.
    Inventors: Sammy Mok, Fu Chiung Chong