Patents by Inventor Samuel Lee Miller

Samuel Lee Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040186497
    Abstract: A cutting blade (56) having a cutting edge (80) defined by an intersection of a first cutting edge surface (72) and a second cutting edge surface (66) is disclosed. The angle between the first cutting edge surface (72) and the second cutting edge surface (66) defines a blade angle (&thgr;). The blade (56) may be fabricated from a wafer (130) by an anisotropic etch. An upper surface (134) of the wafer (130) is defined by a first set of 3 Miller indices, where at least one individual Miller index of this first set has an absolute value greater than 3. A top surface (60) of the blade (56) is defined by part of the upper surface (134) of the wafer (130). The anisotropic etch proceeds until reaching a particular crystallographic plane to define the first cutting edge surface (72). Having the top surface (60) of the blade (56) defined by the noted set of 3 Miller indices increases the potential that a blade angle (&thgr;) of a desired magnitude may be realized.
    Type: Application
    Filed: May 7, 2003
    Publication date: September 23, 2004
    Inventors: Paul Jackson McWhorter, Samuel Lee Miller, Jeffry Joseph Sniegowski, Murray Steven Rodgers
  • Patent number: 6794793
    Abstract: The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: September 21, 2004
    Assignee: Memx, Inc.
    Inventors: Samuel Lee Miller, Murray Steven Rodgers, Stephen Matthew Barnes, Jeffry Joseph Sniegowski, Paul Jackson McWhorter
  • Patent number: 6791162
    Abstract: A unit cell is disclosed that facilitates the creation of a layout of at least a portion of a microelectromechanical system. The unit cell includes a plurality of electrical traces. Some of these electrical traces pass through the unit cell. Other electrical traces extend only part way through the unit cell. At least certain boundary conditions exist for the unit cell that allow the same to be tiled in a row and in a manner that results in adjacently disposed unit cells in the row being electrically interconnected in the desired manner.
    Type: Grant
    Filed: March 16, 2002
    Date of Patent: September 14, 2004
    Assignee: MEMX, Inc.
    Inventor: Samuel Lee Miller
  • Patent number: 6774535
    Abstract: The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: August 10, 2004
    Assignee: Memx, Inc.
    Inventors: Samuel Lee Miller, Murray Steven Rodgers, Stephen Matthew Barnes, Jeffry Joseph Sniegowski, Paul Jackson McWhorter
  • Patent number: 6759787
    Abstract: A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: July 6, 2004
    Assignee: Sandia Corporation
    Inventors: Samuel Lee Miller, Paul Jackson McWhorter, Murray Steven Rodgers, Jeffry J. Sniegowski, Stephen M. Barnes
  • Patent number: 6747340
    Abstract: A multi-level shielded multi-conductor interconnect bus for use in interconnecting MEM devices with control signal sources and a method of fabricating a multi-level shielded multi-conductor interconnect bus are disclosed. In one embodiment, a multi-level shielded interconnect bus (410A) formed on a substrate (20) includes first and second level electrically conductive lines (42, 92) arranged in sets of one, two or more conductive lines between first and second level electrically conductive shield walls (46, 66, 96). The first and second level electrically conductive lines (42, 92) are surrounded by various layers of dielectric material (30, 50, 80, 100). A first level electrically conductive shield (78) overlies the first level electrically conductive lines (42) and shield walls (46, 66). A second level electrically conductive shield (112) overlies the second level electrically conductive lines (92) and shield walls (96).
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 8, 2004
    Assignee: MEMX, Inc.
    Inventors: Stephen Matthew Barnes, Samuel Lee Miller, Murray Steven Rodgers
  • Publication number: 20040090144
    Abstract: The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts.
    Type: Application
    Filed: October 30, 2003
    Publication date: May 13, 2004
    Inventors: Samuel Lee Miller, Murray Steven Rodgers, Stephen Matthew Barnes, Jeffry Joseph Sniegowski, Paul Jackson McWhorter
  • Publication number: 20040090143
    Abstract: The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts.
    Type: Application
    Filed: October 30, 2003
    Publication date: May 13, 2004
    Inventors: Samuel Lee Miller, Murray Steven Rodgers, Stephen Matthew Barnes, Jeffry Joseph Sniegowski, Paul Jackson McWhorter
  • Publication number: 20040090142
    Abstract: The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts.
    Type: Application
    Filed: October 30, 2003
    Publication date: May 13, 2004
    Inventors: Samuel Lee Miller, Murray Steven Rodgers, Stephen Matthew Barnes, Jeffry Joseph Sniegowski, Paul Jackson McWhorter
  • Publication number: 20040080240
    Abstract: A microelectromechanical system is disclosed that uses a stiff tether between an actuator assembly and a lever that is interconnected with an appropriate substrate such that a first end of the lever may move relative to the substrate, depending upon the direction of motion of the actuator assembly. Any appropriate load may be interconnected with the lever, including a mirror for any optical application.
    Type: Application
    Filed: October 17, 2003
    Publication date: April 29, 2004
    Inventors: Samuel Lee Miller, Stephen Matthew Barnes, Murray Steven Rodgers
  • Patent number: 6707077
    Abstract: An interconnect bus for a microelectromechanical system is disclosed. Various attributes for an electrical trace bus that facilitate the routing of signals throughout at least a portion of the system and/or the layout of the microelectromechanical system on a wafer are disclosed.
    Type: Grant
    Filed: March 16, 2002
    Date of Patent: March 16, 2004
    Assignee: MEMX, Inc.
    Inventor: Samuel Lee Miller
  • Patent number: 6706619
    Abstract: A method for creating a layout of at least a portion of a microelectromechanical system is disclosed. In one embodiment, a plurality of die are formed on a wafer. Each die includes a plurality of rows of a plurality of mirror assemblies, a plurality of off-chip electrical contacts, and an electrical trace bus that is disposed between adjacent pairs of rows. This electrical trace bus is electrically interconnected with mirror assemblies in at least one of the rows. A plurality of these die are formed on a wafer. A chip is separated from the wafer such that a chip width is an integer multiple of the die width and such that a chip height is an integer number of the rows of mirror assemblies without requiring the chip height to be an integer multiple of the die height.
    Type: Grant
    Filed: March 16, 2002
    Date of Patent: March 16, 2004
    Assignee: MEMX, Inc.
    Inventors: Samuel Lee Miller, Murray Steven Rodgers
  • Patent number: 6665104
    Abstract: A microelectromechanical system is disclosed that constrains the direction of a force acting on a first load, where the force originates from the interaction of the first load and a second load. In particular, the direction of a force acting on the first load is caused to be substantially parallel with a motion of the first load. This force direction constraint is achieved by a force isolator microstructure that contains no rubbing or contacting surfaces. Various embodiments of structures/methods to achieve this force direction constraint using a force isolator microstructure are disclosed.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: December 16, 2003
    Assignee: MEMX, Inc.
    Inventors: Murray Steven Rodgers, Samuel Lee Miller, Stephen Matthew Barnes, Jeffry Joseph Sniegowski, Paul Jackson McWhorter
  • Patent number: 6650806
    Abstract: A microelectromechanical system is disclosed that has a connector (444) between an elongate coupling/tether (400) and an elevation structure (382) that is movably interconnected with an appropriate substrate (380). A first free end (392) of the elevation structure (382) moves at least generally away from or toward the substrate (380), depending upon the direction of motion of an actuator assembly (464) that is appropriately interconnected with the tether (400). Part of the connector (444) is in compression and another part of the connector (444) is in tension, regardless of whether a pulling or pushing force is being exerted on the tether (400), and thereby the connector (444), by the actuator assembly (464).
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: November 18, 2003
    Assignee: MEMX, Inc.
    Inventors: Murray Steven Rodgers, Samuel Lee Miller, Stephen Matthew Barnes
  • Publication number: 20030201470
    Abstract: A multi-level shielded multi-conductor interconnect bus for use in interconnecting MEM devices with control signal sources and a method of fabricating a multi-level shielded multi-conductor interconnect bus are disclosed. In one embodiment, a multi-level shielded interconnect bus (410A) formed on a substrate (20) includes first and second level electrically conductive lines (42, 92) arranged in sets of one, two or more conductive lines between first and second level electrically conductive shield walls (46, 66, 96). The first and second level electrically conductive lines (42, 92) are surrounded by various layers of dielectric material (30, 50, 80, 100). A first level electrically conductive shield (78) overlies the first level electrically conductive lines (42) and shield walls (46, 66). A second level electrically conductive shield (112) overlies the second level electrically conductive lines (92) and shield walls (96).
    Type: Application
    Filed: April 30, 2003
    Publication date: October 30, 2003
    Inventors: Stephen Matthew Barnes, Samuel Lee Miller, Murray Steven Rodgers
  • Patent number: 6640023
    Abstract: The present invention provides a free space optical cross connect for switching optical signals between a plurality of optical signal ports to/from the switch interface. In one embodiment, a single chip 2N OXC (10) for switching optical signals (12) between any one of N input optical fibers (14) and any one of N output optical fibers (16) within a compact free space switch interface (18) includes N reflective microstructures (20) built/assembled on a substrate (30) and N positioning systems (40) associated with the reflective microstructures (20) that are also built/assembled on the substrate (30).
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: October 28, 2003
    Assignee: MEMX, Inc.
    Inventors: Samuel Lee Miller, Paul Jackson McWhorter, Murray Steven Rodgers, Stephen Matthew Barnes, Jeffry Joseph Sniegowski
  • Patent number: 6624548
    Abstract: The present invention comprises a microelectromechanical positioner to achieve substantially translational positioning of a platform without rotational motion, thereby maintaining a constant angular orientation of the platform during movement. A linkage mechanism of the positioner can comprise parallelogram linkages to constrain the rotational motion of the platform. Such linkages further can comprise flexural hinges or other turning joints at the linkage pivots to eliminate the need for rubbing surfaces. A plurality of the linkage mechanisms can be used to enable translational motion of the platform with two degrees of freedom. A variety of means can be used to actuate the positioner. Independent actuation of the anchor links of the linkage mechanisms with rotary electrostatic actuators can be used to provide controlled translational movement of the platform.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: September 23, 2003
    Assignee: Sandia Corporation
    Inventors: Samuel Lee Miller, Murray Steven Rodgers
  • Publication number: 20030174935
    Abstract: A novel optical channel processing unit is disclosed that is useful for multiplexing, demultiplexing and switching optical signals in a WDM network. In one embodiment, the optical channel processing unit is implemented as an optical switch (700) for interfacing any of various multichannel input ports (702) with any of various multichannel output ports (704). The illustrated switch (700) includes a two-dimensional array of input ports (702) and a two-dimensional array of output ports (704). An input signal (705) is transmitted via a spectral device (706) to an input movable mirror array (708). A signal transmitted by an output port (704) is transmitted via a spectral device (712) to mirrors (714) of an output mirror movable mirror array (716). Each mirror of each array (708 and 716) is movable to target any selected mirror of the opposing array (708 or 716). The arrays (708 and 716) thereby support full multichannel switching functionality for more than two channels.
    Type: Application
    Filed: March 14, 2002
    Publication date: September 18, 2003
    Inventors: Samuel Lee Miller, Michael Hodges, Paul Jackson McWhorter
  • Publication number: 20030174929
    Abstract: Self-shadowed microelectromechanical structures such as self-shadowed bond pads, fuses and compliant members and a method of fabricating self-shadowing microelectromechanical structures that anticipate and accommodate blanket metalization process steps are disclosed. In one embodiment, a self-shadowed bond pad (10) configured for shadowing an exposed end (44A) of a shielded interconnect line (44) connected to the bond pad (10) from undesired metalization during a metalization fabrication process step includes electrically connected overlaying first, second and third bond pad areas (42, 72, 92) patterned from respective first, second and third layers (40, 70, 90) of material deposited on a substrate (20). The exposed end (44A) of the interconnect line (44) abuts an edge of the first bond pad area (42).
    Type: Application
    Filed: March 15, 2002
    Publication date: September 18, 2003
    Inventors: Murray Steven Rodgers, Samuel Lee Miller
  • Publication number: 20030174475
    Abstract: A chip having a microelectromechanical system fabricated thereon is disclosed that has both perimeter off-chip electrical contacts, as well as interior off-chip electrical contacts. The interior off-chip electrical contacts are not used for directing an off-chip signal onto the chip, or for reading out an on-chip a signal to an off-chip location. Instead, these interior off-chip electrical contacts are the result of an efficient way of designing the layout of die on a wafer from which the chip may be diced.
    Type: Application
    Filed: March 16, 2002
    Publication date: September 18, 2003
    Inventor: Samuel Lee Miller