Patents by Inventor Sandip Maity

Sandip Maity has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130061597
    Abstract: The present application provides an inlet air fogging system for a gas turbine engine. The inlet air fogging system may include a fogging nozzle array and a fogging control system in communication with the fogging nozzle array. The fogging control system may include a droplet size measurement system and a humidity level measurement system.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rahul J. Chillar, Chayan Mitra, Julio Enrique Mestroni, Sandip Maity, Rachit Sharma
  • Patent number: 8363224
    Abstract: A fringe locking subsystem for an optical sensing cavity is provided. The subsystem comprises one or more photo detectors that detect a reference signal and a cavity signal; a first amplifier that generates a calculated differential between the reference signal and the cavity signal; a lock-in amplifier that generates a modulation signal based on the calculated differential; and a controller that adjusts a distance within the cavity based on the modulation signal.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 29, 2013
    Assignee: General Electric Company
    Inventors: Sandip Maity, Sameer Dinkar Vartak, Umakant Damodar Rapol
  • Publication number: 20120307241
    Abstract: An auto-aligning system is presented. One embodiment of the auto-aligning system includes a launcher unit configured to direct a first laser beam and a second laser beam through a chamber, wherein the first laser beam is co-linear with the second laser beam. The auto-aligning spectroscopy system further includes a receiver unit configured to receive the first laser beam and the second laser beam passing through the chamber. The receiver unit includes a first detector configured to determine an intensity of the first laser beam. The receiver unit also includes a second detector configured to determine a deviation of the second laser beam from a determined position. Further, the auto-aligning spectroscopy system includes a motorized stage configured to align the launcher unit to a base-line position based on the determined deviation of the second laser beam.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sandip Maity, Chayan Mitra, Rachit Sharma
  • Publication number: 20120277631
    Abstract: An optical displacement sensor is provided according to one embodiment. The optical displacement sensor comprises a housing; a displacement member coupled to the housing, configured to contact an object under test and move based on displacement of the object under test; a light emitter coupled to the housing; an optical transducer coupled to the housing; and a reflecting surface coupled to the displacement member to reflect at least a part of the light emitted from the light emitter to the optical transducer, such that movement of the displacement member modifies intensity distribution of the light reflected to the optical transducer.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sandip Maity, Kunal Ravindra Goray, Nasir Ahmed Desai, Kiran Kumar Bogineni, Sampa Ghosh, Rachit Sharma
  • Publication number: 20120194667
    Abstract: In one embodiment, a system includes an imaging system configured to capture a first image of a rotating component within an interior of a turbine using a first integration time, to capture a second image of the rotating component within the interior of the turbine using a second integration time, different than the first integration time, and to subtract the first image from the second image to obtain a differential image.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: General Electric Company
    Inventors: Ayan Banerjee, Sandip Maity, Rajagopalan Chandrasekharan, Sheri George, Anusha Rammohan
  • Publication number: 20120105852
    Abstract: A detection system for a two-dimensional (2D) array is provided. The detection system comprises an electromagnetic radiation source, a phase difference generator, a detection surface having a plurality of sample fields that can receive samples, and an imaging spectrometer configured to discriminate between two or more spatially separated points.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Abhijit Vishwas Patil, Sandip Maity, Veera Venkata Lakshmi Rajesh Langoju, Anusha Rammohan, Sameer Dinkar Vartak, Umakant Damodar Rapol
  • Publication number: 20110242542
    Abstract: A fringe locking subsystem for an optical sensing cavity is provided. The subsystem comprises one or more photo detectors that detect a reference signal and a cavity signal; a first amplifier that generates a calculated differential between the reference signal and the cavity signal; a lock-in amplifier that generates a modulation signal based on the calculated differential; and a controller that adjusts a distance within the cavity based on the modulation signal.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sandip Maity, Sameer Dinkar Vartak, Umakant Damodar Rapol
  • Publication number: 20110244588
    Abstract: An optical sensing device is provided. The device comprises a cavity defined by at least an anomalous reflective element having an anomalous reflection surface, and a non-absorptive element having a non-absorptive reflection surface disposed in a direction away from the anomalous reflection surface.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sandip Maity, Sameer Dinkar Vartak, Veena Besige Narayan Rao, Masako Yamada, Shankar Chandrasekaran, Abhijit Vishwas Patil, Ayan Banerjee, Umakant Damodar Rapol
  • Publication number: 20110075142
    Abstract: Optical detection systems and optical spectrometric systems are presented. One embodiment is a parallelized optical detection system. The detection system includes collector optics configured to receive an input optical signal, a plurality of optical filters and a plurality of tunable cavities. The collector optics includes at least one collector lens and at least one fiber multiplexer. The plurality of optical filters are configured to receive the input optical signal from the fiber multiplexer, and have serially varying pass band configured to filter the input optical signal at respective bandwidths. Each of the plurality of tunable cavities is optically coupled to each filter of the respective plurality of optical filters to receive a respective filtered output signal. The plurality of tunable cavities have band-pass frequencies with center frequencies staggered.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sandip Maity, Ayan Banerjee, Shankar Chandrasekaran, Anis Zribi, Shivappa Ningappa Goravar, David Cecil Hays, Dirk Lange, Renato Guida
  • Publication number: 20100326962
    Abstract: In one embodiment, a system includes a welding controller configured to receive images from multiple observation points directed toward a deposition zone. The welding controller is also configured to control a parameter affecting deposition based on a differential analysis of the images.
    Type: Application
    Filed: June 24, 2009
    Publication date: December 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya Calla, Sandip Maity, Umakant Damodar Rapol, Alan Joseph Silvia
  • Patent number: 7750646
    Abstract: A detector system for precursively identifying an electrical arcing event is provided. The system may include a transmission channel for transmitting a radio frequency signal to a zone where an arcing event may occur. The system may further include a reception channel for receiving a radio frequency signal resulting from an interaction of the transmitted radio frequency signal and an electric field which forms at the zone as a precursor to an arcing event. A pre-arc identification circuit may be coupled to process the resulting radio frequency signal. The identification circuit may be configured to generate a signal indicative of a pre-arc condition based on at least one parameter of the resulting radio frequency signal.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: July 6, 2010
    Assignee: General Electric Company
    Inventors: Sandip Maity, Ayan Banerjee
  • Publication number: 20100141938
    Abstract: A microfluidic detection system is provided. The system comprises a device for illuminating a microfluidic sample comprising an analyte, wherein illumination from the illuminating device is modulated on and off at a determined frequency, a gated phase-sensitive detector that detects, one or more wavelengths emitting from the analyte, at a determined frequency, and a control device that coordinates the modulating frequency of the illumination and the detecting frequency of the detector.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ayan Banerjee, Sandip Maity, Matthew Damian Pietzykowski, Umakant Damodar Rapol
  • Patent number: 7692785
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 6, 2010
    Assignee: General Electric Company
    Inventors: Willam Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Publication number: 20100047058
    Abstract: A method for measuring temperature of a rotating body such as a steam turbine is provided. The method includes striking a light beam onto the rotating body onto the rotating body and measuring a reflectance of the light beam from the rotating body. The method further includes obtaining a temperature of the rotating body based upon the measured reflectance.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 25, 2010
    Applicant: General Electric Company, a New York Corporation
    Inventors: Chayan Mitra, Ayan Banerjee, Norman Arnold Turnquist, Danian Zheng, Sandip Maity, Roy Paul Swintek
  • Patent number: 7586602
    Abstract: A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: September 8, 2009
    Assignee: General Electric Company
    Inventors: Sandip Maity, Ayan Banerjee, Anis Zribi, Stacey Kennerly, Long Que, Glenn Claydon, Shankar Chandrasekaran, Shivappa Goravar
  • Patent number: 7586603
    Abstract: A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: September 8, 2009
    Assignee: General Electric Company
    Inventors: Sandip Maity, Ayan Banerjee, Anis Zribi, Stacey Kennerly, Long Que, Glenn Claydon, Shankar Chandrasekaran, Shivappa Goravar
  • Publication number: 20090101822
    Abstract: A fuel moisturization sensor system is disclosed. The fuel moisturization sensor system includes a first light source configured for emitting light through a fuel and moisture flow path at a first wavelength, wherein the first wavelength is at least partially absorbable by the moisture when in a vapor phase and substantially not absorbable by the fuel, and a second light source configured for emitting light through the fuel and moisture flow path at a second wavelength, wherein the second wavelength is preferentially scattered by moisture when in a liquid phase and substantially not absorbed by the fuel or by the moisture when in a vapor phase, a detector system configured to detect light transmitted through the flow path at the first and second wavelengths and to generate a first data signal corresponding to the transmission at the first wavelength and a second data signal corresponding to the transmission at the second wavelength.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Chayan Mitra, Ayan Banerjee, Sandip Maity, Bruce Gordon Norman, David Wesley Ball, Jr., Aarron Dell Johansen
  • Publication number: 20080239306
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Publication number: 20080204743
    Abstract: A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
    Type: Application
    Filed: April 17, 2008
    Publication date: August 28, 2008
    Applicant: General Electric Company
    Inventors: Sandip Maity, Ayan Banerjee, Anis Zribi, Stacey Kennerly, Long Que, Glenn Claydon, Shankar Chandrasekaran, Shivappa Goravar
  • Patent number: 7411670
    Abstract: A photonic crystal based collection probe is provided. The probe includes a photonic crystal configured to guide and condition a beam of Raman scattered photons. Further, the device includes a spectrograph in optical communication with the photonic crystal and configured to receive Raman scattering from the photonic crystal. The device may be employed in a Raman spectrometer system.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: August 12, 2008
    Assignee: GE Homeland Protection, Inc.
    Inventors: Anis Zribi, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar (nmn) Chandrasekaran, Sandip Maity, Glenn Scott Claydon, Stacey Joy Kennerly, Todd Ryan Tolliver, David Cecil Hays, Sheila Neumann Tandon, Long Que, Christopher Fred Keimel