Patents by Inventor Sandro H. Pintz

Sandro H. Pintz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190172380
    Abstract: System and method for improving displayed image quality of an electronic display that displays a first image frame by applying a first voltage to a display pixel and a second image frame directly before the first image frame by applying a second voltage to the display pixel. A display pipeline is communicatively coupled to the electronic display and receives first image data corresponding with the first image frame, where the image data includes a first grayscale value corresponding with the display pixel. Additionally the display pipeline determines an inversion balancing grayscale offset based at least in part on the first grayscale value when polarity of the first voltage and polarity of the second voltage are the same and determines magnitude of the first voltage by applying the inversion balancing grayscale offset to the first grayscale value to reduce likelihood of a perceivable luminance spike when displaying the first image frame.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: Christopher P. Tann, Taesung Kim, Sandro H. Pintz
  • Patent number: 10311822
    Abstract: Systems and methods are provided for improving displayed image quality of an electronic display with reduced power consumption. In some embodiments, a display pixel in the electronic display includes a pixel electrode and a common electrode. A pixel electrode driver electrically coupled to the first display pixel writes the display pixel by supplying a pixel voltage signal to the pixel electrode. A common electrode driver electrically coupled to the common electrode includes a power amplifier that supplies a common voltage signal to the common electrode to predictively offset net charge accumulation expected in the common electrode; a first power supply rail selectively connectable to the power amplifier based on a target voltage of the common voltage signal; and a second power supply rail selectively connectable to the power amplifier based on the target voltage, in which the first and second power supply rails supply different voltages when connected.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: June 4, 2019
    Assignee: APPLE INC.
    Inventors: Fenghua Zheng, Howard H. Tang, Sandro H. Pintz
  • Patent number: 10229622
    Abstract: System and method for improving displayed image quality of an electronic display that displays a first image frame by applying a first voltage to a display pixel and a second image frame directly before the first image frame by applying a second voltage to the display pixel. A display pipeline is communicatively coupled to the electronic display and receives first image data corresponding with the first image frame, where the image data includes a first grayscale value corresponding with the display pixel. Additionally the display pipeline determines an inversion balancing grayscale offset based at least in part on the first grayscale value when polarity of the first voltage and polarity of the second voltage are the same and determines magnitude of the first voltage by applying the inversion balancing grayscale offset to the first grayscale value to reduce likelihood of a perceivable luminance spike when displaying the first image frame.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 12, 2019
    Assignee: Apple Inc.
    Inventors: Christopher P. Tann, Taesung Kim, Sandro H. Pintz
  • Patent number: 10163385
    Abstract: A display may have an array of pixels controlled by display driver circuitry. Gate driver circuitry supplies gate line signals to rows of the pixels. The gate driver circuitry may include gate driver integrated circuits. Each gate driver integrated circuit may have a shift register that supplies the gate line signals to the rows of pixels. The display driver circuitry supplies a clock signal to the gate driver integrated circuits. Each gate driver integrated circuit may have one or more clock trees that are selectively enable and disabled. Each gate driver integrated circuit may have a controller and a buffer that is controlled by a control signal from the controller. The buffer may be adjusted to supply or to not supply the clock signal to an associated clock tree in that gate driver integrated circuit.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: December 25, 2018
    Assignee: Apple Inc.
    Inventors: Fenghua Zheng, Christopher P. Tann, David S. Zalatimo, James E. C. Brown, Sandro H. Pintz
  • Publication number: 20180366078
    Abstract: An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The image frames may be displayed with positive and negative polarities to help reduce charge accumulation effects. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may analyze information on gray levels, frame duration, and frame polarity. The charge accumulation tracker may compute a charge accumulation metric for entire image frames or may process subregions of each frame separately. When subregions are processed separately, each subregion may be individually monitored for a risk of excess charge accumulation.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventors: Chaohao Wang, Brijesh Tripathi, Christopher Philip Alan Tann, David S. Zalatimo, Guy Cote, Hao Nan, Marc Albrecht, Paolo Sacchetto, Sandro H. Pintz
  • Publication number: 20180350313
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Application
    Filed: August 14, 2018
    Publication date: December 6, 2018
    Inventors: Prasanna NAMBI, Jason N. GOMEZ, Fenghua ZHENG, Paolo SACCHETTO, Sandro H. PINTZ, Taesung KIM, Christopher P. TANN, Marc ALBRECHT, David W. LUM
  • Patent number: 10121410
    Abstract: This application relates to systems, methods, and apparatus for reducing the power consumption of a display panel. Specifically, the embodiments discussed herein relate to a panel pixel charge scheme that allows the current output of a display driver to be modified based on the content to be displayed at the display panel. The display driver can compare current and upcoming display content in order to determine how the line voltage for one or more output lines will change over time. If, based on the comparison, the voltage for an output line is not going to vary substantially over time, the bias current output from the display driver can be modified in order to save power. The modification to the bias current can depend on the amount of change the line voltage will undergo in subsequent executions of the content data.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: November 6, 2018
    Assignee: Apple Inc.
    Inventors: Fenghua Zheng, Sandro H. Pintz
  • Patent number: 10102815
    Abstract: An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The image frames may be displayed with positive and negative polarities to help reduce charge accumulation effects. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may analyze information on gray levels, frame duration, and frame polarity. The charge accumulation tracker may compute a charge accumulation metric for entire image frames or may process subregions of each frame separately. When subregions are processed separately, each subregion may be individually monitored for a risk of excess charge accumulation.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: October 16, 2018
    Assignee: Apple Inc.
    Inventors: Chaohao Wang, Brijesh Tripathi, Christopher Philip Alan Tann, David S. Zalatimo, Guy Cote, Hao Nan, Marc Albrecht, Paolo Sacchetto, Sandro H. Pintz
  • Patent number: 10056050
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 21, 2018
    Assignee: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum
  • Publication number: 20180166032
    Abstract: An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The image frames may be displayed with positive and negative polarities to help reduce charge accumulation effects. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may analyze information on gray levels, frame duration, and frame polarity. The charge accumulation tracker may compute a charge accumulation metric for entire image frames or may process subregions of each frame separately. When subregions are processed separately, each subregion may be individually monitored for a risk of excess charge accumulation.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Inventors: Chaohao Wang, Brijesh Tripathi, Christopher Philip Alan Tann, David S. Zalatimo, Guy Cote, Hao Nan, Marc Albrecht, Paolo Sacchetto, Sandro H. Pintz
  • Patent number: 9984608
    Abstract: System and method for improving displayed image quality of an electronic display that displays a first image frame by applying a first voltage to a display pixel and a second image frame directly before the first image frame by applying a second voltage to the display pixel. A display pipeline is communicatively coupled to the electronic display and receives first image data corresponding with the first image frame, where the image data includes a first grayscale value corresponding with the display pixel. Additionally the display pipeline determines an inversion balancing grayscale offset based at least in part on the first grayscale value when polarity of the first voltage and polarity of the second voltage are the same and determines magnitude of the first voltage by applying the inversion balancing grayscale offset to the first grayscale value to reduce likelihood of a perceivable luminance spike when displaying the first image frame.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: May 29, 2018
    Assignee: APPLE INC.
    Inventors: Paolo Sacchetto, Christopher P. Tann, Taesung Kim, Sandro H. Pintz, Marc Albrecht, Chaohao Wang, David S. Zalatimo, Fenghua Zheng, Zhibing Ge
  • Patent number: 9953613
    Abstract: Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: April 24, 2018
    Assignee: APPLE INC.
    Inventors: Paolo Sacchetto, David W. Lum, Christopher P. Tann, Guy Cote, Chaohao Wang, Sandro H. Pintz
  • Patent number: 9946101
    Abstract: A method for operating a gate driver that is driving pixel transistors of a display panel, is described. An internal start pulse is produced in response to an external start pulse and in accordance with a system clock, wherein the internal start pulse is input to a first cell of a gate driver shift register whose outputs are coupled to level shifting output stages that are driving the rows of pixel transistors of the display panel. The produced internal start pulse was qualified by an output of a last cell of the gate driver shift register. Other embodiments are also described and claimed.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: April 17, 2018
    Assignee: APPLE INC.
    Inventors: James E. C. Brown, Fenghua Zheng, Sandro H. Pintz
  • Patent number: 9947277
    Abstract: Methods and devices for reducing the power consumption of a frame buffer and timing controller of an electronic display are provided. By way of example, a method of operating an electronic display includes receiving image data from a processor of the electronic display, storing the image data to a buffer of the electronic display, reading the image data from the buffer to supply the image data to a column driver of the electronic display, determining whether an amount of image data stored in buffer is less than a threshold, and switching from reading the image data from the buffer to reading the image data directly from the processor when the amount of image data stored in buffer is less than the threshold.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: April 17, 2018
    Assignee: APPLE INC.
    Inventors: Christopher P. Tann, Sandro H. Pintz, Satish S. Iyengar, David S. Zalatimo
  • Patent number: 9940896
    Abstract: One embodiment of the present disclosure describes an electronic display. The electronic display includes a display driver that write image frames to pixels of the electronic display with a first refresh rate or a second refresh rate, in which the second refresh rate is less than the first refresh rate. Additionally, the electronic display includes a timing controller that receives image frames from an image source, in which one or more of the image frames are configured to be displayed on the display panel to play video content; determines a capture rate of the video content based at least in part on a cadence with which the image frames are received, in which the capture rate describes a rate at which each of the one or more image frames was captured by an image sensor; and instructs the display driver to write the one or more of the image frames at the second refresh when the second refresh rate is an integer multiple of the capture rate.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: April 10, 2018
    Assignee: APPLE INC.
    Inventors: Christopher P. Tann, David S. Zalatimo, Marc Albrecht, Sandro H. Pintz, Satish S. Iyengar
  • Publication number: 20180090084
    Abstract: Devices and methods for useful in providing localized synchronized and/or dynamic in-band internal gamma code adjustment per frame period are provided. By way of example, a display panel includes a data driver, which includes a first DAC configured to provide an internal gamma voltage signal to cause a first adjustment to an image data signal. The first adjustment is configured to selectively adjust the image data signal based at least in part on a refresh rate or a frame rate of the display panel. The data driver includes a second DAC coupled to the first DAC and configured to provide an external gamma voltage signal configured to provide a second adjustment to the image data signal, and an output buffer configured to supply the image data signal to pixels of the display panel, wherein the image data signal comprises the first adjustment and the second adjustment.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 29, 2018
    Inventors: Fenghua Zheng, Christopher P. Tann, Sandro H. Pintz, David S. Zalatimo, Jun Qi, Zhibing Ge
  • Patent number: 9922608
    Abstract: An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The image frames may be displayed with positive and negative polarities to help reduce charge accumulation effects. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may analyze information on gray levels, frame duration, and frame polarity. The charge accumulation tracker may compute a charge accumulation metric for entire image frames or may process subregions of each frame separately. When subregions are processed separately, each subregion may be individually monitored for a risk of excess charge accumulation.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: March 20, 2018
    Assignee: Apple Inc.
    Inventors: Chaohao Wang, Brijesh Tripathi, Christopher Philip Alan Tann, David S. Zalatimo, Guy Cote, Hao Nan, Marc Albrecht, Paolo Sacchetto, Sandro H. Pintz
  • Publication number: 20180068624
    Abstract: Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 8, 2018
    Inventors: Fenghua Zheng, Howard H. Tang, James C. Aamold, Sandro H. Pintz, Chaohao Wang, Paolo Sacchetto
  • Publication number: 20180068605
    Abstract: System and method for improving displayed image quality of an electronic display that displays a first image frame by applying a first voltage to a display pixel and a second image frame directly before the first image frame by applying a second voltage to the display pixel. A display pipeline is communicatively coupled to the electronic display and receives first image data corresponding with the first image frame, where the image data includes a first grayscale value corresponding with the display pixel. Additionally the display pipeline determines an inversion balancing grayscale offset based at least in part on the first grayscale value when polarity of the first voltage and polarity of the second voltage are the same and determines magnitude of the first voltage by applying the inversion balancing grayscale offset to the first grayscale value to reduce likelihood of a perceivable luminance spike when displaying the first image frame.
    Type: Application
    Filed: November 14, 2017
    Publication date: March 8, 2018
    Inventors: Christopher P. Tann, Taesung Kim, Sandro H. Pintz
  • Publication number: 20180061355
    Abstract: Systems and methods are provided for improving displayed image quality of an electronic display with reduced power consumption. In some embodiments, a display pixel in the electronic display includes a pixel electrode and a common electrode. A pixel electrode driver electrically coupled to the first display pixel writes the display pixel by supplying a pixel voltage signal to the pixel electrode. A common electrode driver electrically coupled to the common electrode includes a power amplifier that supplies a common voltage signal to the common electrode to predictively offset net charge accumulation expected in the common electrode; a first power supply rail selectively connectable to the power amplifier based on a target voltage of the common voltage signal; and a second power supply rail selectively connectable to the power amplifier based on the target voltage, in which the first and second power supply rails supply different voltages when connected.
    Type: Application
    Filed: August 2, 2017
    Publication date: March 1, 2018
    Inventors: Fenghua Zheng, Howard H. Tang, Sandro H. Pintz