Patents by Inventor Sanjay Bhandari

Sanjay Bhandari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170082438
    Abstract: An integrated MEMS inertial sensing device can include a MEMS inertial sensor with a drive loop configuration overlying a CMOS IC substrate. The CMOS IC substrate can include an AGC loop circuit coupled to the MEMS inertial sensor. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude. A benefit of the AGC loop is that the charge pump of the HV driver inherently includes a ‘time constant’ for charging up of its output voltage. This incorporates the Low pass functionality in to the AGC loop without requiring additional circuitry.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: ALI J. RASTEGAR, SANJAY BHANDARI
  • Patent number: 9594095
    Abstract: A hand-held processor system for processing data from an integrated MEMS (Micro-Electro-Mechanical-Systems) device disposed within a hand-held computer system and methods therefor. The Single Point Offset Correction (SPOC) process computes offset values to calibrate MEMS sensors using a single set of data measurements at an orientation without dynamic perturbation, and without requiring advance knowledge of orientation of the device. Arbitrary output biases, which are known to be dominant on a single axis, can be corrected to ensure consistent performance. The SPOC process provides a simple method to effectively calibrate a MEMS sensor without requiring extensive system resources. This process can be enhanced by additional estimations of sensor offsets using the set of data measurements or by use of rule-based empirical gain factors.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: March 14, 2017
    Assignee: mCube Inc.
    Inventors: Sanjay Bhandari, Joe Kelly
  • Patent number: 9541396
    Abstract: A system comprising an integrated multi-axis MEMS inertial sensor architecture. The system can include a MEMS gyroscope having a MEMS resonator and a MEMS accelerometer overlying a CMOS IC substrate. The CMOS IC substrate can include low noise Charge Sense amplifiers to process the sensed signals, programmable gain amplifiers, a demodulator, mixer, an AGC loop circuit coupled to the MEMS gyroscope to drive MEMS resonator. The CMOS IC also includes programmable Quadrature cancellation, Analog and digital phase shifters are implemented in the architecture to ensure quadrature cancellation and demodulation to achieve optimal performance. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude while consuming low power. The MEMS gyroscope and accelerometer can be coupled to an input multiplexer configured to operate in a time-multiplexed manner.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: January 10, 2017
    Assignee: mCube Inc.
    Inventor: Sanjay Bhandari
  • Patent number: 9513122
    Abstract: An integrated MEMS inertial sensing device can include a MEMS inertial sensor with a drive loop configuration overlying a CMOS IC substrate. The CMOS IC substrate can include an AGC loop circuit coupled to the MEMS inertial sensor. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude. A benefit of the AGC loop is that the charge pump of the HV driver inherently includes a ‘time constant’ for charging up of its output voltage. This incorporates the Low pass functionality in to the AGC loop without requiring additional circuitry.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: December 6, 2016
    Assignee: mCube Inc.
    Inventors: Ali J. Rastegar, Sanjay Bhandari
  • Publication number: 20160349327
    Abstract: A method is provided for implementing a security mechanism in an integrated MEMS (Micro-Electro-Mechanical-System) device having a MEMS sensor with an output register associated with a sensing operation, the integrated MEMS device being electrically coupled to a computing system programmed to perform the method. The method includes, in normal operation, reading from the output register an output of the sensing operation, and in a test mode, determining, by a processor disposed within the computing system, a random value. Determining the random value can include reading from the output register, which in the test mode or provides a value from an internal pattern generator. The method also includes determining, by the processor, a validation value, reading, by the processor, the random value stored in the output register; and determining, by the processor, whether the integrated device is valid using the validation value and the random value stored in the output register.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Inventors: Sanjay Bhandari, Tony Maraldo
  • Patent number: 9418247
    Abstract: Systems and methods for implementing security mechanisms in integrated devices and related structures. This method can include validating a device ID, generating a random value based on selected seed parameters, performing logic operations from hardware using the random value, and validating the integrated device based on logic operations from software using the random value. The system can include executable instructions for performing the method in a computing system. Various embodiments of the present invention represent several implementations of a security mechanism for integrated devices. These implementations provide several levels of encryption or protection of integrated devices, which can be tailored depending on the hardware and/or software requirements of specific applications.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: August 16, 2016
    Assignee: MCUBE INC.
    Inventors: Sanjay Bhandari, Tony Maraldo
  • Publication number: 20150276405
    Abstract: An integrated MEMS inertial sensing device can include a MEMS inertial sensor with a drive loop configuration overlying a CMOS IC substrate. The CMOS IC substrate can include an AGC loop circuit coupled to the MEMS inertial sensor. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude. A benefit of the AGC loop is that the charge pump of the HV driver inherently includes a ‘time constant’ for charging up of its output voltage. This incorporates the Low pass functionality in to the AGC loop without requiring additional circuitry.
    Type: Application
    Filed: January 17, 2014
    Publication date: October 1, 2015
    Applicant: mCube Inc.
    Inventors: ALI J. RASTEGAR, Sanjay Bhandari
  • Publication number: 20150276406
    Abstract: A system can include a MEMS gyroscope having a MEMS resonator overlying a CMOS IC substrate. The CMOS IC substrate can include an AGC loop circuit coupled to the MEMS gyroscope. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude. A benefit of the AGC loop is that the charge pump of the HV driver inherently includes a ‘time constant’ for charging up of its output voltage. The system incorporates the Low pass functionality in to the AGC loop without requiring additional circuitry.
    Type: Application
    Filed: January 17, 2014
    Publication date: October 1, 2015
    Applicant: mCube Inc.
    Inventors: ALI J. RASTEGAR, SANJAY BHANDARI, SUDHEER S. SRIDHARAMURTHY
  • Publication number: 20150276407
    Abstract: A system comprising an integrated multi-axis MEMS inertial sensor architecture. The system can include a MEMS gyroscope having a MEMS resonator and a MEMS accelerometer overlying a CMOS IC substrate. The CMOS IC substrate can include low noise Charge Sense amplifiers to process the sensed signals, programmable gain amplifiers, a demodulator, mixer, an AGC loop circuit coupled to the MEMS gyroscope to drive MEMS resonator. The CMOS IC also includes programmable Quadrature cancellation, Analog and digital phase shifters are implemented in the architecture to ensure quadrature cancellation and demodulation to achieve optimal performance. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude while consuming low power. The MEMS gyroscope and accelerometer can be coupled to an input multiplexer configured to operate in a time-multiplexed manner.
    Type: Application
    Filed: January 21, 2014
    Publication date: October 1, 2015
    Applicant: mCube Inc.
    Inventor: SANJAY BHANDARI
  • Publication number: 20140025330
    Abstract: A hand-held processor system for processing data from an integrated MEMS (Micro-Electro-Mechanical-Systems) device disposed within a hand-held computer system and methods therefor. The Dynamic Temperature Correction (DTC) process computes offset values to calibrate MEMS sensors using a single set of data measurements at an orientation without dynamic perturbation and one or more temperature data measurements, and without requiring advance knowledge of orientation of the device. Arbitrary output biases, which are known to be dominant on a single axis, can be corrected to ensure consistent performance. The DTC process provides a simple method to effectively calibrate a MEMS sensor without requiring extensive system resources. This process can be enhanced by additional estimations of sensor offsets using the set of data measurements or by use of rule-based empirical gain factors.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 23, 2014
    Applicant: MCube, Inc.
    Inventor: Sanjay Bhandari
  • Publication number: 20140012531
    Abstract: A hand-held processor system for processing data from an integrated MEMS (Micro-Electro-Mechanical-Systems) device disposed within a hand-held computer system and methods therefor. The Single Point Offset Correction (SPOC) process computes offset values to calibrate MEMS sensors using a single set of data measurements at an orientation without dynamic perturbation, and without requiring advance knowledge of orientation of the device. Arbitrary output biases, which are known to be dominant on a single axis, can be corrected to ensure consistent performance. The SPOC process provides a simple method to effectively calibrate a MEMS sensor without requiring extensive system resources. This process can be enhanced by additional estimations of sensor offsets using the set of data measurements or by use of rule-based empirical gain factors.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 9, 2014
    Applicant: MCube, Inc.
    Inventors: Sanjay BHANDARI, Joe KELLY
  • Publication number: 20110222700
    Abstract: A system includes a noise detector configured to identify undesirable noise components in an acoustic signal and a noise energy profiler configured to analyze the identified undesirable noise components and generate a noise energy profile. In the system, a cancelation profile generator is configured to generate a noise cancelation profile based at least in part on information in the noise energy profile, and a cancelation profile effector is configured to translate the noise cancelation profile into values for a programmable circuit.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Inventor: Sanjay Bhandari