Patents by Inventor Sanjay C. Mehta

Sanjay C. Mehta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160047038
    Abstract: Embodiments of the present invention provide hydrogen-free dielectric films and methods of fabrication. A hydrogen-free precursor, such as tetraisocyanatosilane, and hydrogen-free reactants, such as nitrogen, oxygen (O2/O3) and nitrous oxide are used with chemical vapor deposition processes (PECVD, thermal CVD, SACVD, HDP CVD, and PE and Thermal ALD) to create hydrogen-free dielectric films. In some embodiments, there are multilayer dielectric films with sublayers of various materials such as silicon oxide, silicon nitride, and silicon oxynitride. In embodiments, the hydrogen-free reactants may include Tetra Isocyanato Silane, along with a hydrogen-free gas including, but not limited to, N2, O2, O3, N2O, CO2, CO and a combination thereof of these H-Free gases. Plasma may be used to enhance the reaction between the TICS and the other H-free gasses. The plasma may be controlled during film deposition to achieve variable density within each sublayer of the films.
    Type: Application
    Filed: October 29, 2015
    Publication date: February 18, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald Francis Canaperi, Alfred Grill, Sanjay C. Mehta, Son Van Nguyen, Deepika Priyadarshini, Hosadurga Shobha, Matthew T. Shoudy
  • Publication number: 20160049311
    Abstract: A method of particle mitigation which includes obtaining a semiconductor wafer having a nonfunctional backside and a functional frontside on which semiconductor devices are formed by one or more lithography processes; coating the backside with a layer comprising silicon or amorphous carbon; planarizing the coated backside by a planarizing process; placing the semiconductor wafer onto a wafer chuck such that the wafer chuck makes direct contact with the coated backside; and while maintaining the coated backside in direct contact with the wafer chuck, performing a first lithographic process on the frontside.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 18, 2016
    Inventors: Marc A. Bergendahl, James J. Demarest, Alex R. Hubbard, Richard Johnson, Ryan O. Jung, James J. Kelly, Sanjay C. Mehta, Alexander Reznicek, Allan W. Upham
  • Publication number: 20150357434
    Abstract: A method of fabricating a semiconductor device includes forming at least one semiconductor fin on a semiconductor substrate. A plurality of gate formation layers is formed on an etch stop layer disposed on the fin. The plurality of gate formation layers include a dummy gate layer formed from a dielectric material. The plurality of gate formation layers is patterned to form a plurality of dummy gate elements on the etch stop layer. Each dummy gate element is formed from the dielectric material. A spacer layer formed on the dummy gate elements is etched to form a spacer on each sidewall of dummy gate elements. A portion of the etch stop layer located between each dummy gate element is etched to expose a portion the semiconductor fin. A semiconductor material is epitaxially grown from the exposed portion of the semiconductor fin to form source/drain regions.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Linus Jang, Sivananda K. Kanakasabapathy, Sanjay C. Mehta, Soon-Cheon Seo, Raghavasimhan Sreenivasan
  • Patent number: 9184042
    Abstract: A method of particle mitigation which includes obtaining a semiconductor wafer having a nonfunctional backside and a functional frontside on which semiconductor devices are formed by one or more lithography processes; coating the backside with a mitigating layer comprising silicon or amorphous carbon; patterning the mitigating layer to form indentations in the mitigating layer; placing the semiconductor wafer onto a wafer chuck such that the wafer chuck makes direct contact with the coated and patterned backside mitigating layer; and while maintaining the coated and patterned backside mitigating layer in direct contact with the wafer chuck, performing a first lithographic process on the frontside.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: November 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, James J. Demarest, Alex R. Hubbard, Richard Johnson, Ryan O. Jung, James J. Kelly, Sanjay C. Mehta, Alexander Reznicek, Allan W. Upham
  • Patent number: 9171927
    Abstract: A method comprising steps of removing a first dielectric material, including a hard mask layer and one or more spacer material layers, from a semiconductor device having a sacrificial gate whose sidewalls being covered by said spacer material layers, and a raised source and a raised drain region with both, together with said sacrificial gate, being covered by said hard mask layer, wherein the removing is selective to the sacrificial gate, raised source region and raised drain region and creates a void between each of the raised source region, raised drain region and sacrificial gate. The method includes depositing a conformal layer of a second dielectric material to the semiconductor device, wherein the second material conforms in a uniform layer to the raised source region, raised drain region and sacrificial gate, and fills the void between each of the raised source region, raised drain region and sacrificial gate.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: October 27, 2015
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Sanjay C. Mehta, Shom S. Ponoth, Muthumanickam Sankarapandian, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 9166049
    Abstract: Methods and structures for increasing strain in fully insulated finFETs are described. The finFET structures may be formed on an insulating layer and include source, channel, and drain regions that are insulated all around. During fabrication, the source and drain regions may be formed as suspended structures. A strain-inducing material may be formed around the source and drain regions on four contiguous sides so as to impart strain to the channel region of the finFET.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: October 20, 2015
    Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Loubet, Ali Khakifirooz, Pierre Morin, Sanjay C. Mehta
  • Publication number: 20150287593
    Abstract: Embodiments of the present invention provide hydrogen-free dielectric films and methods of fabrication. A hydrogen-free precursor, such as tetraisocyanatosilane, and hydrogen-free reactants, such as nitrogen, oxygen (O2/O3) and nitrous oxide are used with chemical vapor deposition processes (PECVD, thermal CVD, SACVD, HDP CVD, and PE and Thermal ALD) to create hydrogen-free dielectric films. In some embodiments, there are multilayer dielectric films with sublayers of various materials such as silicon oxide, silicon nitride, and silicon oxynitride. In embodiments, the hydrogen-free reactants may include Tetra Isocyanato Silane, along with a hydrogen-free gas including, but not limited to, N2, O2, O3, N2O, CO2, CO and a combination thereof of these H-Free gases. Plasma may be used to enhance the reaction between the TICS and the other H-free gasses. The plasma may be controlled during film deposition to achieve variable density within each sublayer of the films.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 8, 2015
    Applicant: International Business Machines Corporation
    Inventors: Donald Francis Canaperi, Alfred Grill, Sanjay C. Mehta, Son Van Nguyen, Deepika Priyadarshini, Hosadurga Shobha, Matthew T. Shoudy
  • Patent number: 9153447
    Abstract: A field effect transistor device includes a fin including a semiconductor material arranged on an insulator layer, the fin including a channel region, a hardmask layer arranged partially over the channel region of the fin, a gate stack arranged over the hardmask layer and over the channel region of the fin, a metallic alloy layer arranged on a first portion of the hardmask layer, the metallic alloy layer arranged adjacent to the gate stack, and a first spacer arranged adjacent to the gate stack and over the metallic alloy layer.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: October 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Publication number: 20150255605
    Abstract: Methods and structures for increasing strain in fully insulated finFETs are described. The finFET structures may be formed on an insulating layer and include source, channel, and drain regions that are insulated all around. During fabrication, the source and drain regions may be formed as suspended structures. A strain-inducing material may be formed around the source and drain regions on four contiguous sides so as to impart strain to the channel region of the finFET.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 10, 2015
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Ali Khakifirooz, Pierre Morin, Sanjay C. Mehta
  • Publication number: 20150214331
    Abstract: A method of fabricating a semiconductor device includes forming at least one semiconductor fin on a semiconductor substrate. A plurality of gate formation layers is formed on an etch stop layer disposed on the fin. The plurality of gate formation layers include a dummy gate layer formed from a dielectric material. The plurality of gate formation layers is patterned to form a plurality of dummy gate elements on the etch stop layer. Each dummy gate element is formed from the dielectric material. A spacer layer formed on the dummy gate elements is etched to form a spacer on each sidewall of dummy gate elements. A portion of the etch stop layer located between each dummy gate element is etched to expose a portion the semiconductor fin. A semiconductor material is epitaxially grown from the exposed portion of the semiconductor fin to form source/drain regions.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicants: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Linus Jang, Sivananda K. Kanakasabapathy, Sanjay C. Mehta, Soon-Cheon Seo, Raghavasimhan Sreenivasan
  • Patent number: 9093376
    Abstract: A method for fabricating a field effect transistor device includes depositing a hardmask over a semiconductor layer depositing a metallic alloy layer over the hardmask, defining a semiconductor fin, depositing a dummy gate stack material layer conformally on exposed portions of the fin, patterning a dummy gate stack by removing portions of the dummy gate stack material using an etching process that selectively removes exposed portions of the dummy gate stack without appreciably removing portions of the metallic alloy layer, removing exposed portions of the metallic alloy layer, forming spacers adjacent to the dummy gate stack, forming source and drain regions on exposed regions of the semiconductor fin, removing the dummy gate stack, removing exposed portions of the metallic alloy layer, and forming a gate stack conformally over exposed portions of the insulator layer and the semiconductor fin.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Publication number: 20150137244
    Abstract: A field effect transistor device includes a fin including a semiconductor material arranged on an insulator layer, the fin including a channel region, a hardmask layer arranged partially over the channel region of the fin, a gate stack arranged over the hardmask layer and over the channel region of the fin, a metallic alloy layer arranged on a first portion of the hardmask layer, the metallic alloy layer arranged adjacent to the gate stack, and a first spacer arranged adjacent to the gate stack and over the metallic alloy layer.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 21, 2015
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Publication number: 20150137245
    Abstract: A field effect transistor device includes a fin including a semiconductor material arranged on an insulator layer, the fin including a channel region, a hardmask layer arranged partially over the channel region of the fin, a gate stack arranged over the hardmask layer and over the channel region of the fin, a metallic alloy layer arranged on a first portion of the hardmask layer, the metallic alloy layer arranged adjacent to the gate stack, and a first spacer arranged adjacent to the gate stack and over the metallic alloy layer.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 21, 2015
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Publication number: 20150137243
    Abstract: A method for fabricating a field effect transistor device includes depositing a hardmask over a semiconductor layer depositing a metallic alloy layer over the hardmask, defining a semiconductor fin, depositing a dummy gate stack material layer conformally on exposed portions of the fin, patterning a dummy gate stack by removing portions of the dummy gate stack material using an etching process that selectively removes exposed portions of the dummy gate stack without appreciably removing portions of the metallic alloy layer, removing exposed portions of the metallic alloy layer, forming spacers adjacent to the dummy gate stack, forming source and drain regions on exposed regions of the semiconductor fin, removing the dummy gate stack, removing exposed portions of the metallic alloy layer, and forming a gate stack conformally over exposed portions of the insulator layer and the semiconductor fin.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 21, 2015
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Publication number: 20150024568
    Abstract: A method comprising steps of removing a first dielectric material, including a hard mask layer and one or more spacer material layers, from a semiconductor device having a sacrificial gate whose sidewalls being covered by said spacer material layers, and a raised source and a raised drain region with both, together with said sacrificial gate, being covered by said hard mask layer, wherein the removing is selective to the sacrificial gate, raised source region and raised drain region and creates a void between each of the raised source region, raised drain region and sacrificial gate. The method includes depositing a conformal layer of a second dielectric material to the semiconductor device, wherein the second material conforms in a uniform layer to the raised source region, raised drain region and sacrificial gate, and fills the void between each of the raised source region, raised drain region and sacrificial gate.
    Type: Application
    Filed: October 8, 2014
    Publication date: January 22, 2015
    Inventors: Sanjay C. Mehta, Shom S. Ponoth, Muthumanickam Sankarapandian, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8900973
    Abstract: A method of making a semiconductor device patterns a first fin in a pFET region, and patterns a second fin in an nFET region. A plurality of conformal microlayers containing a straining material are deposited on the first and second fins. A protective cap material is formed on the first fin, and the conformal layers are selectively removed from the second fin. The straining material is then thermally diffused into the first fin. The protective cap material is removed from the first fin after the thermal annealing and after the conformal micro layers are selectively removed from the second fin.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 2, 2014
    Assignees: International Business Machines Corporation, Globalfoundries Inc., Renesas Electronics America Inc., STMicroelectronics, Inc.
    Inventors: Nathaniel C. Berliner, Pranita Kulkarni, Nicolas Loubet, Kingsuk Maitra, Sanjay C. Mehta, Paul A. Ronsheim, Toyoji Yamamoto, Zhengmao Zhu
  • Publication number: 20140295637
    Abstract: A method comprising steps of removing a first dielectric material, including a hard mask layer and one or more spacer material layers, from a semiconductor device having a sacrificial gate whose sidewalls being covered by said spacer material layers, and a raised source and a raised drain region with both, together with said sacrificial gate, being covered by said hard mask layer, wherein the removing is selective to the sacrificial gate, raised source region and raised drain region and creates a void between each of the raised source region, raised drain region and sacrificial gate. The method includes depositing a conformal layer of a second dielectric material to the semiconductor device, wherein the second material conforms in a uniform layer to the raised source region, raised drain region and sacrificial gate, and fills the void between each of the raised source region, raised drain region and sacrificial gate.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 2, 2014
    Applicant: International Business Machines Corporation
    Inventors: Sanjay C. Mehta, Shom S. Ponoth, Muthumanickam Sankarapandian, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20140110784
    Abstract: A method for fabricating a field effect transistor device includes depositing a hardmask over a semiconductor layer depositing a metallic alloy layer over the hardmask, defining a semiconductor fin, depositing a dummy gate stack material layer conformally on exposed portions of the fin, patterning a dummy gate stack by removing portions of the dummy gate stack material using an etching process that selectively removes exposed portions of the dummy gate stack without appreciably removing portions of the metallic alloy layer, removing exposed portions of the metallic alloy layer, forming spacers adjacent to the dummy gate stack, forming source and drain regions on exposed regions of the semiconductor fin, removing the dummy gate stack, removing exposed portions of the metallic alloy layer, and forming a gate stack conformally over exposed portions of the insulator layer and the semiconductor fin.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Publication number: 20140110785
    Abstract: A field effect transistor device includes a fin including a semiconductor material arranged on an insulator layer, the fin including a channel region, a hardmask layer arranged partially over the channel region of the fin, a gate stack arranged over the hardmask layer and over the channel region of the fin, a metallic alloy layer arranged on a first portion of the hardmask layer, the metallic alloy layer arranged adjacent to the gate stack, and a first spacer arranged adjacent to the gate stack and over the metallic alloy layer.
    Type: Application
    Filed: November 9, 2012
    Publication date: April 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Publication number: 20130052801
    Abstract: A method of making a semiconductor device patterns a first fin in a pFET region, and patterns a second fin in an nFET region. A plurality of conformal microlayers containing a straining material are deposited on the first and second fins. A protective cap material is formed on the first fin, and the conformal layers are selectively removed from the second fin. The straining material is then thermally diffused into the first fin. The protective cap material is removed from the first fin after the thermal annealing and after the conformal micro layers are selectively removed from the second fin.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, RENESAS ELECTRONICS AMERICA, INC., GLOBALFOUNDRIES, STMICROELECTRONICS, INC.
    Inventors: Nathaniel C. Berliner, Pranita Kulkarni, Nicolas Loubet, Kingsuk Maitra, Sanjay C. Mehta, Paul A. Ronsheim, Toyoji Yamamoto, Zhengmao Zhu