Patents by Inventor Sanjay K. Yedur

Sanjay K. Yedur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6884999
    Abstract: The present invention provides a system and method for detecting and repairing defects in semiconductor devices. According to the invention, defects are located using a scanning probe microscope, such as an atomic force microscope or a scanning tunneling microscope, and repaired at locations determined by the scanning probe microscope. The microscope itself, and in particular the detection tip, may be employed to remove the defects. For example, the tip may be used to machine away the defect, to apply an electric field to oxidize the defect, and/or to heat the defect causing it to burn or vaporize. By combining precise defect location capabilities of a scanning probe microscope with defect removal, the invention permits very precise correction of defects such as excess material and foreign particles on semiconductor substrates.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: April 26, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay K. Yedur, Bhanwar Singh, Bryan K. Choo
  • Patent number: 6829380
    Abstract: A system for evaluating optical proximity corrected (OPC) designs is provided. The system includes an analysis system for performing measurements relating to a segment of a feature. The analysis system is configured to determine a first image for the segment of the feature based upon the measurements. The analysis system determines a second image to facilitate analysis of the first image and evaluates OPC designs based upon comparisons of the first and second image.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: December 7, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bryan K. Choo, Bhanwar Singh, Sanjay K. Yedur
  • Patent number: 6813574
    Abstract: Patterned layers in an integrated circuit (IC) or other device are aligned in conjunction with the detection of the topology of the layers. The topology can be used to determine the location of a metrology mark and/or to compensate for a horizontal shift in the apparent location of the metrology mark. Precise detection of topography can be achieved without physical contact with the IC or other device with an atomic force microscope.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: November 2, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay K. Yedur, Bhanwar Singh, Bharath Rangarajan, Ramkumar Subramanian
  • Patent number: 6635874
    Abstract: The present invention provides SEM calibration standards, and associated SEM systems and SEM calibration methods, that are self-cleaning with respect to electron beam deposited carbon. The calibration standards have coatings containing a transition metal oxide. The coatings facilitate oxidation of deposited carbon, whereby carbon buildup can be stopped or reversed. By providing a mechanism to mitigate carbon buildup, calibration standards provided by the present invention achieve high accuracy, high durability, and low cost.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: October 21, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bhanwar Singh, Michael K. Templeton, Sanjay K. Yedur, Bryan K. Choo
  • Patent number: 6605855
    Abstract: The present invention relates to a method for fabricating interconnecting lines and vias in a layer of insulating material. A via is formed in the layer of insulating material. A protective material is formed so as to be conformal to at least edges and sidewalls of the via, the protective material facilitating shielding of at least the edges and sidewalls of the via from a trench etch step. The trench etch step is performed to form a trench opening in the insulating material. The via and trench are filled with a conductive metal.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: August 12, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bhanwar Singh, Michael K. Templeton, Bharath Rangarajan, Christopher F. Lyons, Sanjay K. Yedur, Ramkumar Subramanian
  • Patent number: 6591658
    Abstract: The present invention provides systems, methods, and standards for calibrating nano-measuring devices. Calibration standards of the invention include carbon nanotubes and methods of the invention involve scanning carbon nanotubes using nano-scale measuring devices. The widths of the carbon nanotube calibration standards are known with a high degree of accuracy. The invention allows calibration of a wide variety of nano-scale measuring devices, taking into account many, and in some cases all, of the systematic errors that may affect a nano-scale measurement. The invention may be used to accurately calibrate line width, line height, and trench width measurements and may be used to precisely characterize both scanning probe microscope tips and electron microscope beams.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: July 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay K. Yedur, Bhanwar Singh, Bryan K. Choo, Michael K. Templeton, Ramkumar Subramanian
  • Patent number: 6592932
    Abstract: A system and method is provided that facilitates the application of a uniform layer of developer material on a photoresist material layer. The system includes a nozzle adapted to apply a predetermined volume of developer material on a photoresist material layer along a linear path having a length approximately equal to the diameter of the photoresist material layer. A movement system moves the nozzle to a first position offset from a central region of the photoresist material layer for applying a first predetermined volume of developer material to the photoresist material layer while the developer material is spin coated. The movement system also moves the nozzle to a second position offset from the central region for applying a second predetermined volume of developer material to the photoresist material layer while the developer is spin coated. The first position is located on an opposite side of the central region with respect to the second position.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: July 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramkumar Subramanian, Khoi A. Phan, Bharath Rangarajan, Bhanwar Singh, Michael K. Templeton, Sanjay K. Yedur
  • Patent number: 6566655
    Abstract: The present invention provides a system and method that facilitates measuring and imaging topographical features of a substrate, including lines and trenches having reentrant profiles. One aspect of the invention provides an electron microscope that simultaneously scans a substrate with two or more electron beams that are directed against the substrate with substantially differing angles of incidence. Secondary electrons resulting from the interaction of the substrate with the beams are detected by one or more secondary electron detectors. Each secondary electron detector may simultaneously receive secondary electrons resulting from the interaction of the substrate with two or more electron beams. In another of its aspects, the invention provides methods of analysis that permit the interpretation of such data to analyze critical dimensions and form images of the substrate. Critical dimensions that may be determined include feature heights and reentrant profile shapes.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: May 20, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bryan K. Choo, Bhanwar Singh, Sanjay K. Yedur
  • Publication number: 20030068430
    Abstract: A system and method is provided that facilitates the application of a uniform layer of developer material on a photoresist material layer. The system includes a nozzle adapted to apply a predetermined volume of developer material on a photoresist material layer along a linear path having a length approximately equal to the diameter of the photoresist material layer. A movement system moves the nozzle to a first position offset from a central region of the photoresist material layer for applying a first predetermined volume of developer material to the photoresist material layer while the developer material is spin coated. The movement system also moves the nozzle to a second position offset from the central region for applying a second predetermined volume of developer material to the photoresist material layer while the developer is spin coated. The first position is located on an opposite side of the central region with respect to the second position.
    Type: Application
    Filed: March 21, 2001
    Publication date: April 10, 2003
    Inventors: Ramkumar Subramanian, Khoi A. Phan, Bharath Rangarajan, Bhanwar Singh, Michael K. Templeton, Sanjay K. Yedur
  • Patent number: 6545273
    Abstract: The present invention comprises a system for deconvolving tip effects associated with scanning tips in scanning probe microscopes and other scanning systems. The system comprises a scanning system operable to scan a feature or artifact with multiple, different type scanning tips and generate scan data associated therewith and a processor operably coupled to the scanning system. The processor is adapted to determine characteristics associated with the multiple, different type scanning tips using the scan data associated therewith. The present invention also comprises a method of determining scanning probe microscope tip effects. The method comprises the steps of scanning a feature or artifact with a plurality of different type scanning tips, resulting in a plurality of scan data sets associated with the different type scanning tips. The tip effects associated with the different type scanning tips are then deconvolved using the plurality of scan data sets.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: April 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bhanwar Singh, Bharath Rangarajan, Sanjay K. Yedur
  • Patent number: 6541184
    Abstract: A system and method is provided that facilitates the application of a uniform layer of developer material on a photoresist material layer. The system includes a multiple tip nozzle and a movement system that moves the nozzle to an operating position above a central region of a photoresist material layer located on a substrate, and applies a volume of developer as the nozzle scan moves across a predetermined path. The movement system moves the nozzle in two dimensions by providing an arm that has a first arm member that is pivotable about a first rotational axis and a second arm member that is pivotable about a second rotational axis or is movable along a translational axis. The system also provides a measurement system that measures the thickness uniformity of the developed photoresist material layer disposed on a test wafer. The thickness uniformity data is used to reconfigure the predetermined path of the nozzle as the developer is applied.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: April 1, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramkumar Subramanian, Khoi A. Phan, Bharath Rangarajan, Bhanwar Singh, Michael K. Templeton, Sanjay K. Yedur
  • Patent number: 6479817
    Abstract: A measuring system and apparatus is provided in which a scanning probe microscope includes a high resolution optical sensor adapted to view a portion of a workpiece beneath the scanning probe tip. Also provided is a scanning tip assembly with a cantilever/tip assembly and an optical sensor associated with the cantilever assembly. In one embodiment, the optical sensor comprises a charge coupled device or other solid state camera associated with the cantilever and/or the tip. In addition, a scanning tip assembly is provided for a scanning probe microscope having an optical fiber adapted to receive reflected light from the at least a portion of the workpiece. Also provided is a measuring apparatus comprising a scanning probe microscope having an optical fiber adapted to receive reflected light from a feature of a workpiece, and an optical processor connected to the optical fiber to provided a visual image based on the reflected light from the feature of the workpiece.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: November 12, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay K. Yedur, Bhanwar Singh, Bryan K. Choo, Carmen L. Morales
  • Patent number: 6459482
    Abstract: The present invention provides SEM systems, SEM calibration standards, and SEM calibration methods that improved accuracy in critical dimension measurements. The calibration standards have features formed with an amorphous material such as amorphous silicon. Amorphous materials lack the crystal grain structure of materials such as polysilicon and are capable of providing sharper edged features and higher accuracy patterns than grained materials. The amorphous material can be bound to a silicon wafer substrate through an intermediate layer of material, such as silicon dioxide. Where the intermediate layer is insulating material, as is silicon dioxide, the intermediate layer may be patterned with gaps to provide for electrical communication between the amorphous silicon and the silicon wafer. Charges imparted to the amorphous silicon during electron beam scanning may thereby drain to the silicon wafer rather than accumulating to a level where they would distort the electron beam.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: October 1, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bhanwar Singh, Ramkumar Subramanian, Khoi A. Phan, Bharath Rangarajan, Michael K. Templeton, Sanjay K. Yedur, Bryan K. Choo
  • Patent number: 6455847
    Abstract: The present invention relates to a system for measuring a linewidth or profile of a feature and comprises a scanning probe microscope having a nanotube scanning tip. The nature of the nanotube scanning tip provides high resolution and accurate measurements which is generally independent of a wearing thereof. The present invention also relates to a method of measuring a linewidth of profile of a feature and comprises the steps of scanning a portion of the feature on the substrate with a scanning probe microscope comprising a nanotube scanning tip and detecting a characteristic associated with the nanotube scanning tip. The method also comprises determining a characteristic associated with the portion of the feature on the substrate based on the detected nanotube scanning tip characteristic. Lastly, the present invention relates to a method of detecting a partially open contact hole and comprises scanning a region containing the contact hole with a scanning probe microscope comprising a nanotube scanning tip.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: September 24, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay K. Yedur, Bhanwar Singh, Bryan K. Choo
  • Patent number: 6451512
    Abstract: In one embodiment, the present invention relates to a method of processing an ultrathin resist, involving the steps of depositing the ultra-thin photoresist over a semiconductor substrate, the ultra-thin resist having a thickness less than about 3,000 Å; irradiating the ultra-thin resist with electromagnetic radiation having a wavelength of about 250 nm or less; developing the ultra-thin resist; and contacting the ultra-thin resist with a silicon containing compound in an environment of at least one of ultraviolet light and ozone, wherein contact of the ultra-thin resist with the silicon containing compound is conducted between irradiating and developing the ultra-thin resist or after developing the ultra-thin resist.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: September 17, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bharath Rangarajan, Ramkumar Subramanian, Khoi A. Phan, Bhanwar Singh, Michael K. Templeton, Sanjay K. Yedur, Bryan K. Choo
  • Patent number: 6452161
    Abstract: A measuring system and apparatus is provided in which a scanning probe microscope includes a high resolution optical sensor adapted to view a portion of a workpiece beneath the scanning probe tip. Also provided is a scanning tip assembly with a cantilever/tip assembly and an optical sensor associated with a cantilever assembly. The optical sensor may comprise a charge coupled device or other solid state camera and may be fabricated on the cantilever and/or the tip. In addition, a scanning tip assembly is provided for a scanning probe microscope having an optical fiber adapted to receive reflected light from the at least a portion of the workpiece. The scanning tip may be employed in an AFM or other scanning probe microscope, thereby providing simultaneous viewing and scanning of a workpiece surface.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: September 17, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay K. Yedur, Bhanwar Singh, Bryan K. Choo, Carmen L. Morales
  • Patent number: 6444381
    Abstract: One aspect of the present invention relates to a method for reducing carbon contamination on a mask involving placing a mask plate having carbon-containing contaminants thereon in a processing chamber; simultaneously contacting the mask plate with oxygen and exposing the mask plate with a flood exposure of electron beams wherein the carbon-containing contaminants are converted to a by-product; and removing the by-product from the processing chamber.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: September 3, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bhanwar Singh, Ramkumar Subramanian, Michael K. Templeton, Bharath Rangarajan, Khoi A. Phan, Bryan K. Choo, Sanjay K. Yedur
  • Patent number: 6441349
    Abstract: A system and method for facilitating uniform heating temperature of a material is provided. The material may be a photoresist, a top or bottom anti-reflective coating, a low K dielectric material, SOG or other spin-on material. The system can include at least one heating element and a heat transfer fluid, the heating element heating the heat transfer fluid, which in turn heats the material. The transfer fluid more evenly distributes the heat from the heating element, which can have hot and cold spots at the material.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: August 27, 2002
    Assignee: Advanced Micro Devices
    Inventors: Bharath Rangarajan, Bhanwar Singh, Sanjay K. Yedur
  • Patent number: 6437329
    Abstract: A system for analyzing a film and detecting a defect associated therewith includes a scanning probe microscope having a nanotube tip with a material associated therewith which exhibits a characteristic that varies with respect to a film composition at a location corresponding to the nanotube tip. The system also includes a detection system for detecting the material characteristic and a controller operatively coupled to the detection system and the scanning probe microscope. The controller configured to receive information associated with the detected characteristic and use the information to determine whether the film contains a defect at the location corresponding to the nanotube tip. The invention also includes a method of detecting a film composition at a particular location of a film or substrate. The method includes associating a material exhibiting a characteristic which varies with respect to a film composition with a nanotube tip of a scanning probe microscope and detecting the characteristic.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: August 20, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay K. Yedur, Bhanwar Singh, Bryan K. Choo
  • Patent number: 6423479
    Abstract: In one embodiment, the present invention relates to a method of processing a lithography mask, involving the steps of exposing a lithography substrate with actinic radiation through the lithography mask in a chamber; removing the lithography mask from the chamber, wherein the lithography mask contains carbon contaminants; and contacting the lithography mask with sulfur trioxide thereby reducing the carbon contaminants thereon.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: July 23, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramkumar Subramanian, Khoi A. Phan, Bharath Rangarajan, Bhanwar Singh, Sanjay K. Yedur, Bryan K. Choo