Patents by Inventor Santona Pal

Santona Pal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240225956
    Abstract: A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP <660>. The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.
    Type: Application
    Filed: March 21, 2024
    Publication date: July 11, 2024
    Applicant: Corning Incorporated
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Publication number: 20240197566
    Abstract: A coated glass package comprising a glass body having a Type 1 chemical durability according to USP 660, at least a class A2 base resistance or better according to ISO 695, and at least a type HGB2 hydrolytic resistance or better according to ISO 719. A lubricous coating having a thickness of ?100 microns may be positioned on at least a portion of the exterior surface of the glass body. The portion of the coated glass package with the lubricous coating comprises a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing a depyrogenation cycle. A horizontal compression strength of the coated glass package is at least 10% greater than an uncoated glass package and the horizontal compression strength is not reduced by more than 20% after undergoing the depyrogenation cycle.
    Type: Application
    Filed: February 27, 2024
    Publication date: June 20, 2024
    Applicant: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Publication number: 20240158293
    Abstract: An article is described herein that includes: a substrate having a glass, glass-ceramic or a ceramic composition and comprising a primary surface; and a protective film disposed on the primary surface. The protective film comprises a thickness of greater than 1.5 microns and a maximum hardness of greater than 15 GPa at a depth of 500 nanometers, as measured on the film disposed on the substrate. Further, the protective film comprises a metal oxynitride that is graded such that an oxygen concentration in the film varies by 1.3 or more atomic %. In addition, the substrate comprises an elastic modulus less than an elastic modulus of the film.
    Type: Application
    Filed: January 22, 2024
    Publication date: May 16, 2024
    Inventors: Kaveh Adib, Guangli Hu, William Joseph Hurley, Dana Ianson, Lin Lin, Santona Pal, James Joseph Price
  • Patent number: 11963927
    Abstract: A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP <660>. The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 23, 2024
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Patent number: 11951072
    Abstract: A coated glass pharmaceutical package includes a glass body having a Type 1 chemical durability according to USP 660, at least a class A2 base resistance or better according to ISO 695, and at least a type HGB2 hydrolytic resistance or better according to ISO 719, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A lubricous coating having a thickness of less than or equal to 90 nm may be positioned on at least a portion of the exterior surface of the glass body but not on any portion of the interior surface. The portion of the coated glass package with the lubricous coating comprises a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing a depyrogenation cycle including exposure to a temperature of 250° C. for a time period of 30 minutes.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: April 9, 2024
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 11939259
    Abstract: Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: March 26, 2024
    Assignee: Corning Incorporated
    Inventors: John Frederick Bayne, Dana Craig Bookbinder, Theresa Chang, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Kyle Christopher Hoff, Jamie Lynne Morley, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Christopher Lee Timmons
  • Publication number: 20240091103
    Abstract: According to embodiments, a coated pharmaceutical container may include a pharmaceutical container comprising an interior surface and an exterior surface, wherein the pharmaceutical container may include a glass composition that has Class HGA1 hydrolytic resistance when tested according to the ISO 720 testing standard. The coated pharmaceutical container may further include a coating bonded to at least a portion of the exterior surface but not on any portion of the interior surface. The coating may have a coefficient of friction less than or equal to 0.7, and the coated pharmaceutical container may be thermally stable after heating at a temperature of at least 260° C. for a time period of 30 minutes.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 11905203
    Abstract: An article is described herein that includes: a substrate having a glass, glass-ceramic or a ceramic composition and comprising a primary surface; and a protective film disposed on the primary surface. The protective film comprises a thickness of greater than 1.5 microns and a maximum hardness of greater than 15 GPa at a depth of 500 nanometers, as measured on the film disposed on the substrate. Further, the protective film comprises a metal oxynitride that is graded such that an oxygen concentration in the film varies by 1.3 or more atomic %. In addition, the substrate comprises an elastic modulus less than an elastic modulus of the film.
    Type: Grant
    Filed: January 26, 2023
    Date of Patent: February 20, 2024
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Guangli Hu, William Joseph Hurley, Dana Ianson, Lin Lin, Santona Pal, James Joseph Price
  • Patent number: 11872189
    Abstract: According to embodiments, a method of making a coated pharmaceutical container, may include: forming a glass tube; forming the glass tube into a pharmaceutical container comprising an interior surface and an exterior surface; and applying a coating to the exterior surface. The coating has a coefficient of friction less than or equal to 0.7 relative to a second pharmaceutical container when tested in a vial-on-vial testing jig under a normal load of 30 N. The coated pharmaceutical container may be thermally stable after depyrogenation at a temperature of at least 260° C. for 30 minutes in air.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: January 16, 2024
    Assignee: Corning Incorporated
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 11786441
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may Include a glass body formed from borosilicate glass that meets Type 1 criteria according to USP <660> or alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating comprising a polymer may be positioned on a portion of the exterior surface. A coefficient of friction of an abraded area of the portion of the exterior surface with the low-friction coating may be less than 0.7 after exposure to a temperature of 260° C. for 30 minutes and abrasion under a load of at least 10 N and does not have observable damage. A retained strength of the coated glass article in horizontal compression does not decrease by more than 20% after the temperature exposure and the abrasion.
    Type: Grant
    Filed: June 30, 2018
    Date of Patent: October 17, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 11737951
    Abstract: Coated pharmaceutical packages may comprise a glass body formed from a borosilicate glass composition having a Type 1 chemical durability according to USP 660, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A low-friction thermally stable coating having a thickness of ?1 ?m may be positioned on at least a portion of the exterior surface. The low-friction coating may comprise a silane. The portion of the exterior surface of the coated pharmaceutical package may have a coefficient of friction that is at least 20% less than an uncoated pharmaceutical package formed from the same borosilicate glass composition.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: August 29, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 11673371
    Abstract: Shaped glass structures, in particular to curved glass structures, having optically improved transmittance are provided along with methods of making such glass structures. Articles and methods described herein mask tube or reforming defects with help of refractive index-matching substances (e.g. optically clear adhesives) and/or additional glass layers. The articles and methods are applicable to any shaped glass, and is particularly useful for 3D-shaped parts for use in portable electronic devices.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: June 13, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Jaymin Amin, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, Santona Pal
  • Publication number: 20230167018
    Abstract: An article is described herein that includes: a substrate having a glass, glass-ceramic or a ceramic composition and comprising a primary surface; and a protective film disposed on the primary surface. The protective film comprises a thickness of greater than 1.5 microns and a maximum hardness of greater than 15 GPa at a depth of 500 nanometers, as measured on the film disposed on the substrate. Further, the protective film comprises a metal oxynitride that is graded such that an oxygen concentration in the film varies by 1.3 or more atomic %. In addition, the substrate comprises an elastic modulus less than an elastic modulus of the film.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 1, 2023
    Inventors: Kaveh Adib, Guangli Hu, William Joseph Hurley, Dana Ianson, Lin Lin, Santona Pal, James Joseph Price
  • Publication number: 20230132277
    Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Applicant: CORNING INCORPORATED
    Inventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
  • Patent number: 11608290
    Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
    Type: Grant
    Filed: March 17, 2019
    Date of Patent: March 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
  • Patent number: 11591258
    Abstract: An article that includes: a substrate having a glass, glass-ceramic or a ceramic composition and comprising a primary surface; and a protective film disposed on the primary surface. The protective film comprises a thickness of greater than 1.5 microns and a maximum hardness of greater than 15 GPa at a depth of 500 nanometers, as measured on the film disposed on the substrate. Further, the protective film comprises a metal oxynitride that is graded such that an oxygen concentration in the film varies by 1.3 or more atomic %. In addition, the substrate comprises an elastic modulus less than an elastic modulus of the film.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 28, 2023
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Guangli Hu, William Joseph Hurley, Dana Ianson, Lin Lin, Santona Pal, James Joseph Price
  • Publication number: 20230043558
    Abstract: Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).
    Type: Application
    Filed: October 4, 2022
    Publication date: February 9, 2023
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Kyle Christopher Hoff
  • Publication number: 20220380252
    Abstract: Methods of manufacturing a glass-based article include exposing a glass-based substrate to a molten salt bath including a first salt and a second salt. In aspects, the first salt includes a metal ion that has a larger ionic radii than an alkali metal of the glass-based substrate and a first anion, and the second salt dissolved in the molten salt bath includes the same metal ion as the first salt and a second anion different from the first anion. In aspects, the first salt is potassium nitrate, the second salt is potassium carbonate, and a concentration of the potassium carbonate remains at or below its solubility limit in the molten salt bath.
    Type: Application
    Filed: August 11, 2022
    Publication date: December 1, 2022
    Inventors: Qiao Li, Santona Pal
  • Patent number: 11497681
    Abstract: Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: November 15, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Kyle Christopher Hoff
  • Patent number: 11447417
    Abstract: Methods of enhanced ion exchange (IOX) include exposing a substrate to a bath mixture that includes a second salt dissolved in a first salt, the second salt includes the same metal ion as the first salt with an anion different from the first salt. The first salts are conventional nitrate salts into which one or more second salts, for example, carbonate, sulfate, chloride, fluorine, borate, or phosphate salts are dissolved. The second salts remain at or below their solubility limits in the first salts. Any poisoning ions remain at or below their solubility limits in the bath mixture. Glass-based articles made therefrom and electronic devices incorporating the glass-based articles are also disclosed.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: September 20, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Qiao Li, Santona Pal