Patents by Inventor Santona Pal

Santona Pal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11325855
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In an embodiment the glass composition may include from about 67 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; from about 2 mol. % to about 10 mol. % Al2O3; from about 2 mol. % to about 18 mol. % alkali oxide, wherein the alkali oxide comprises non-zero amounts of Na2O; from 0 mol. % to about 4 mol. % B2O3; and from about 0.01 mol. % to about 1 mol. % of a fining agent.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 10, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20210339502
    Abstract: Shaped glass structures, in particular to curved glass structures, having optically improved transmittance are provided along with methods of making such glass structures. Articles and methods described herein mask tube or reforming defects with help of refractive index-matching substances (e.g. optically clear adhesives) and/or additional glass layers. The articles and methods are applicable to any shaped glass, and is particularly useful for 3D-shaped parts for use in portable electronic devices.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: Jaymin Amin, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, Santona Pal
  • Patent number: 11097514
    Abstract: Shaped glass structures, in particular to curved glass structures, having optically improved transmittance are provided along with methods of making such glass structures. Articles and methods described herein mask tube or reforming defects with help of refractive index-matching substances (e.g. optically clear adhesives) and/or additional glass layers. The articles and methods are applicable to any shaped glass, and is particularly useful for 3D-shaped parts for use in portable electronic devices.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: August 24, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Jaymin Amin, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, Santona Pal
  • Publication number: 20210230056
    Abstract: A method of making strengthened articles that includes: providing articles comprising ion-exchangeable alkali metal ions and first and second primary surfaces; providing a bath comprising ion-exchanging alkali metal ions larger in size than the ion-exchangeable ions; and submersing the articles in the bath at a first ion-exchange temperature and duration to form strengthened articles. Each strengthened article comprises a compressive stress region. Further, the exchange rate of the ion-exchanging alkali metal ions is higher into the first primary surface than into the second primary surface. In addition, the submersing step is conducted such that a predetermined gap is maintained between the first primary surface of each of the articles.
    Type: Application
    Filed: May 31, 2019
    Publication date: July 29, 2021
    Inventors: Brian Sterling Chan, Yinghong Chen, Sumalee Likitvanichkul Fagan, Jun Hou, Qiao Li, Santona Pal, Rohit Rai
  • Patent number: 11071689
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be positioned on at least a portion of the first surface of the glass body the low-friction coating may include a polymer and a coupling agent disposed between the polymer and the first surface of the glass body. A coefficient of friction of the portion of the coated pharmaceutical package with the low-friction coating is at least 20% less than a coefficient of friction of a surface of an uncoated pharmaceutical package formed from the same glass composition.
    Type: Grant
    Filed: June 30, 2018
    Date of Patent: July 27, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Publication number: 20210212895
    Abstract: Coated pharmaceutical packages may comprise a glass body formed from a borosilicate glass composition having a Type 1 chemical durability according to USP 660, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A low-friction thermally stable coating having a thickness of ?1 ?m may be positioned on at least a portion of the exterior surface. The low-friction coating may comprise a silane. The portion of the exterior surface of the coated pharmaceutical package may have a coefficient of friction that is at least 20% less than an uncoated pharmaceutical package formed from the same borosilicate glass composition.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 11020317
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body comprising a first surface and a second surface opposite the first surface. The glass body may be a glass container formed from a borosilicate glass composition and the first surface is an exterior surface of the glass container. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. In embodiments, the low-friction coating may be a fluoropolymer.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: June 1, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 11007117
    Abstract: Coated glass pharmaceutical packages are disclosed. According to embodiments, a coated glass pharmaceutical package may include a glass container formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be bonded to the exterior surface of the glass container. The low-friction coating may include a polymer. The exterior surface of the glass container with the low-friction coating may have a coefficient of friction of less than or equal to 0.7. The coated glass pharmaceutical package may be thermally stable after depyrogenation in air at a temperature of at least about 260° C. for 30 minutes.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 18, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10899654
    Abstract: Glass-based articles comprise: a glass-based substrate having opposing first and second surfaces defining a substrate thickness (t); a stress profile comprising: a compressive stress region extending from the first surface to a depth of compression (DOC), the DOC located at 0.04•t or deeper; and a central tension region. An alkali metal oxide is present in the central tension region. A first metal oxide whose metal has the same or smaller atomic radius as the metal of the alkali metal oxide, and a second metal oxide whose metal has a larger atomic radius than the metal of the alkali metal oxide are both present in independent concentrations that vary within at least a portion of the compressive stress region.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: January 26, 2021
    Assignee: Corning Incorporated
    Inventors: Qiao Li, Santona Pal
  • Publication number: 20200375846
    Abstract: A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP <660>. The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Applicant: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Publication number: 20200339469
    Abstract: Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: CORNING INCORPORATED
    Inventors: John Frederick Bayne, Dana Craig Bookbinder, Theresa Chang, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Kyle Christopher Hoff, Jamie Lynne Morley, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Christopher Lee Timmons
  • Patent number: 10813835
    Abstract: Glass pharmaceutical packages comprising glass containers are disclosed. In embodiments, a coated glass pharmaceutical package includes a glass container formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A lubricous coating may be positioned on at least a portion of the exterior surface of the glass container. The portion of the coated glass pharmaceutical package with the lubricous coating has a coefficient of friction that is at least 20% less than an uncoated glass container formed from the same glass composition. A horizontal compression strength of the portion of the coated glass pharmaceutical package with the lubricous coating may be at least 10% greater than an uncoated glass container formed from the same glass composition.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: October 27, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 10786431
    Abstract: A delamination resistant glass pharmaceutical container may include a glass body comprising a borosilicate glass having a Type 1 chemical durability according to USP <660>. At least an inner surface of the glass body may have a delamination factor less than or equal to 10. A thermally stable coating may be positioned around at least a portion of the outer surface of the glass body. The thermally stable coating may be an outermost coating on the outer surface of the glass body and the outer surface of the glass body with the thermally stable coating has a coefficient of friction less than or equal to 0.7. The thermally stable coating comprising at least one of a metal nitride coating, a metal oxide coating, a metal sulfide coating, SiO2, diamond-like carbon, graphene, and a carbide coating.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 29, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 10787292
    Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include an aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to ISO 720-1985 testing standard. The glass containers may also have a compressive stress layer with a depth of layer of greater than 25 ?m. A surface compressive stress of the glass containers may be greater than or equal to 350 MPa. The delamination resistant glass pharmaceutical containers may be ion exchange strengthened and the ion exchange strengthening may include treating the delamination resistant glass pharmaceutical container in a molten salt bath for a time less than or equal to 5 hours at a temperature less than or equal to 450° C.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: September 29, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
  • Publication number: 20200268608
    Abstract: According to embodiments, a method of making a coated pharmaceutical container, may include: forming a glass tube; forming the glass tube into a pharmaceutical container comprising an interior surface and an exterior surface; and applying a coating to the exterior surface. The coating may have a coefficient of friction less than or equal to 0.7 relative to a second pharmaceutical container when tested in a vial-on-vial testing jig under a normal load of 30 N. The coated pharmaceutical container may be thermally stable after depyrogenation at a temperature of at least 260° C. for 30 minutes in air.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10737973
    Abstract: Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: August 11, 2020
    Assignee: CORNING INCORPORATED
    Inventors: John Frederick Bayne, Dana Craig Bookbinder, Theresa Chang, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Kyle Christopher Hoff, Jamie Lynne Morley, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Christopher Lee Timmons
  • Publication number: 20200247715
    Abstract: An article that includes: a substrate having a glass, glass-ceramic or a ceramic composition and comprising a primary surface; and a protective film disposed on the primary surface. The protective film comprises a thickness of greater than 1.5 microns and a maximum hardness of greater than 15 GPa at a depth of 500 nanometers, as measured on the film disposed on the substrate. Further, the protective film comprises a metal oxynitride that is graded such that an oxygen concentration in the film varies by 1.3 or more atomic %. In addition, the substrate comprises an elastic modulus less than an elastic modulus of the film.
    Type: Application
    Filed: September 27, 2018
    Publication date: August 6, 2020
    Inventors: Kaveh Adib, Guangli Hu, William Joseph Hurley, Dana Ianson, Lin Lin, Santona Pal, James Joseph Price
  • Patent number: 10683234
    Abstract: Described herein are various methods and manufacturing methods for making antimicrobial and strengthened, antimicrobial glass articles and substrates. The methods described herein generally include contacting the article with a KNO3-containing molten salt bath set at about 380 C to about 460 C for about 30 minutes to about 24 hours to form a compressive stress layer that extends inward from a surface of the glass substrate to a first depth; and contacting the article comprising the compressive stress layer with a AgNO3-containing molten salt bath set at about 300° C. to about 400° C. for about 5 minutes to about 18 hours to form an antimicrobial region that extends inward from the surface of the glass substrate to a second depth. The methods also include poisoning at least the AgNO3-containing molten salt bath and, in some cases, the KNO3-containing molten salt bath. Poisoning components include Na+ and Li+ ions.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 16, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Ekaterina Aleksandrovna Kuksenkova, Sumalee Likitvanichkul, Santona Pal, Mehmet Derya Tetiker
  • Publication number: 20200102244
    Abstract: Methods of enhanced ion exchange (IOX) include exposing a substrate to a bath mixture that includes a second salt dissolved in a first salt, the second salt includes the same metal ion as the first salt with an anion different from the first salt. The first salts are conventional nitrate salts into which one or more second salts, for example, carbonate, sulfate, chloride, fluorine, borate, or phosphate salts are dissolved. The second salts remain at or below their solubility limits in the first salts. Any poisoning ions remain at or below their solubility limits in the bath mixture. Glass-based articles made therefrom and electronic devices incorporating the glass-based articles are also disclosed.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 2, 2020
    Inventors: Qiao Li, Santona Pal
  • Patent number: 10597322
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: March 24, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut