Patents by Inventor Sarin Deshpande

Sarin Deshpande has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240107891
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes etching through a first portion of the magnetoresistive stack using a first etch process to form one or more sidewalls. At least a portion of the sidewalls includes redeposited material after the etching. The method also includes modifying at least a portion of the redeposited material on the sidewalls, and etching through a second portion of the magnetoresistive stack after the modifying step. The magnetoresistive stack may include a first magnetic region, an intermediate region disposed over the first magnetic region, and a second magnetic region disposed over the intermediate region.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Sarin A. DESHPANDE, Kerry Joseph NAGEL
  • Patent number: 11937436
    Abstract: A magnetoresistive stack includes a fixed magnetic region, one or more dielectric layers disposed on and in contact with the fixed magnetic region, and a free magnetic region disposed above the one or mom dielectric layers. The fixed magnetic region may include a first ferromagnetic region, a coupling layer, a second ferromagnetic region, a transition layer disposed, a reference layer, and at least one interfacial layer disposed above the second ferromagnetic region. Another interfacial layer may be disposed between the one or more dielectric layers and the free magnetic region.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: March 19, 2024
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Jijun Sun, Han-Jong Chia, Sarin Deshpande, Ahmet Demiray
  • Publication number: 20240049607
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 8, 2024
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Sarin A. DESHPANDE
  • Publication number: 20230403943
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 14, 2023
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin A. DESHPANDE, Kerry Joseph NAGEL, Chaitanya MUDIVARTHI, Sanjeev AGGARWAL
  • Patent number: 11778919
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: October 3, 2023
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Sarin A. Deshpande, Kerry Joseph Nagel, Chaitanya Mudivarthi, Sanjeev Aggarwal
  • Publication number: 20230100514
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Application
    Filed: October 11, 2022
    Publication date: March 30, 2023
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Thomas ANDRE, Sarin A. DESHPANDE
  • Patent number: 11482570
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: October 25, 2022
    Assignee: Everspin Technologies, Inc.
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Thomas Andre, Sarin A. Deshpande
  • Patent number: 11335728
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: May 17, 2022
    Assignee: Everspin Technologies, Inc.
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Thomas Andre, Sarin A. Deshpande
  • Publication number: 20220045269
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Application
    Filed: October 26, 2021
    Publication date: February 10, 2022
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin A. DESHPANDE, Kerry Joseph NAGEL, Chaitanya MUDIVARTHI, Sanjeev AGGARWAL
  • Patent number: 11189785
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer. (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: November 30, 2021
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Kerry Joseph Nagel, Chaitanya Mudivarthi, Sanjeev Aggarwal
  • Publication number: 20210359201
    Abstract: A magnetoresistive stack includes a fixed magnetic region, one or more dielectric layers disposed on and in contact with the fixed magnetic region, and a free magnetic region disposed above the one or mom dielectric layers. The fixed magnetic region may include a first ferromagnetic region, a coupling layer, a second ferromagnetic region, a transition layer disposed, a reference layer, and at least one interfacial layer disposed above the second ferromagnetic region. Another interfacial layer may be disposed between the one or more dielectric layers and the free magnetic region.
    Type: Application
    Filed: October 29, 2019
    Publication date: November 18, 2021
    Applicant: Everspin Technologies, Inc.
    Inventors: Jijun SUN, Han-Jong CHIA, Sarin DESHPANDE, Ahmet DEMIRAY
  • Publication number: 20210328138
    Abstract: Fabrication of a magnetic memory element, including a via (125) in an interlevel dielectric layer (120), providing an electrical connection between an underlying metal region (110) and a magnetoresistive stack device, such as a magnetic tunnel junction (150), involves forming a transition metal layer (130) in the via by atomic layer deposition. The via optionally includes a tantalum-rich layer (140) above, and/or a cap layer (115) below, the transition metal layer, and may have a diameter less than or equal than a diameter of the magnetoresistive stack device.
    Type: Application
    Filed: August 22, 2019
    Publication date: October 21, 2021
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Sarin DESHPANDE, Kerry NAGEL, Santosh KARRE
  • Patent number: 11043630
    Abstract: A magnetoresistive device may include an intermediate region positioned between a magnetically fixed region and a magnetically free region, and spin Hall channel region extending around a sidewall of at least the magnetically free region. An insulator region may extend around a portion of the sidewall such that the insulator region contacts a first portion of the sidewall and the spin Hall channel region contacts a second portion of the sidewall.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: June 22, 2021
    Assignee: Everspin Technologies, Inc.
    Inventors: Sanjeev Aggarwal, Sarin A. Deshpande
  • Publication number: 20210118948
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Thomas ANDRE, Sarin A. DESHPANDE
  • Publication number: 20210119118
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
    Type: Application
    Filed: December 2, 2020
    Publication date: April 22, 2021
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Sarin A. DESHPANDE
  • Patent number: 10971545
    Abstract: A magnetoresistive device may include multiple magnetic tunnel junction (MTJ) stacks separated from each other by one or more dielectric material layers and electrically conductive vias extending through the one more dielectric material layers. Each MTJ stack may include multiple MTJ bits arranged one on top of another and the electrically conductive vias may be configured to electrically access each MTJ bit of the multiple MTJ stacks.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: April 6, 2021
    Assignee: Everspin Technologies, Inc.
    Inventors: Sanjeev Aggarwal, Kevin Conley, Sarin A. Deshpande
  • Patent number: 10950657
    Abstract: An integrated circuit device includes a memory portion and a logic portion. The memory portion may include a plurality of magnetoresistive devices and the logic portion may include logic circuits. The memory portion may include a plurality of metal conductors separated by a first interlayer dielectric material (ILD), wherein the first ILD is a low-k ILD or an ultra low-k ILD. And, the logic portion may include a plurality of metal conductors separated by a second interlayer dielectric material (ILD).
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: March 16, 2021
    Assignee: Everspin Technologies. Inc.
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Sarin A. Deshpande
  • Patent number: 10886463
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 5, 2021
    Assignee: Everspin Technologies, Inc.
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Sarin A. Deshpande
  • Publication number: 20200373481
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes etching through a first portion of the magnetoresistive stack using a first etch process to form one or more sidewalls. At least a portion of the sidewalls includes redeposited material after the etching. The method also includes modifying at least a portion of the redeposited material on the sidewalls, and etching through a second portion of the magnetoresistive stack after the modifying step. The magnetoresistive stack may include a first magnetic region, an intermediate region disposed over the first magnetic region, and a second magnetic region disposed over the intermediate region.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Sarin A. DESHPANDE, Kerry Joseph NAGEL
  • Patent number: 10847715
    Abstract: A magnetoresistive-based device and method of manufacturing a magnetoresistive-based device using one or more hard masks. The process of manufacture, in one embodiment, includes patterning a mask, after patterning the mask, etching (a) through a first layer of electrically conductive material to form an electrically conductive electrode and (b) through a third layer of ferromagnetic material to provide sidewalls of the second synthetic antiferromagnetic structure. The process further includes providing insulating material on or over the sidewalls of the second synthetic antiferromagnetic structure and, thereafter, etching through (a) a second tunnel barrier layer to provide sidewalls thereof, (b) a second layer of ferromagnetic material to provide sidewalls thereof, (c) a first tunnel barrier layer to provide sidewalls thereof, and (d) a first layer of ferromagnetic material to provide sidewalls of the first synthetic antiferromagnetic structure.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: November 24, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Kerry Joseph Nagel