Patents by Inventor Satoru IDOJIRI

Satoru IDOJIRI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10930870
    Abstract: The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: February 23, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Kayo Kumakura, Hiroyuki Watanabe, Seiji Yasumoto, Satoru Idojiri, Hiroki Adachi
  • Patent number: 10923350
    Abstract: The yield of a manufacturing process of a semiconductor device is increased. The mass productivity of a semiconductor device is increased. A semiconductor device is manufactured by forming a first material layer over a substrate; forming a second material layer over the first material layer; and separating the first material layer and the second material layer from each other; and heating the first material layer and the second material layer that are stacked before the separation. The first material layer includes a gas containing hydrogen, oxygen, or hydrogen and oxygen (e.g., water) in a metal oxide, for example. The second material layer includes a resin. The first material layer and the second material layer are separated from each other by a break of a hydrogen bond. Specifically water is separated out at the interface or near the interface, and then adhesion is reduced due to the water present.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: February 16, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masataka Sato, Seiji Yasumoto, Kayo Kumakura, Satoru Idojiri
  • Patent number: 10879331
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: December 29, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi Takeshima
  • Patent number: 10872947
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: December 22, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi Takeshima
  • Publication number: 20200388776
    Abstract: A method of fabricating a semiconductor device, which includes a separation step and has a high yield, is provided. A metal layer is formed over a substrate, fluorine is supplied to the metal layer, and the metal layer is then oxidized, whereby a metal compound layer is formed. A functional layer is formed over the metal compound layer, heat treatment is performed on the metal compound layer, and the functional layer is separated from the substrate with use of the metal compound layer. By performing first plasma treatment using a gas containing fluorine, fluorine can be supplied to the metal layer. By performing second plasma treatment using a gas containing oxygen, the metal layer supplied with fluorine can be oxidized.
    Type: Application
    Filed: December 3, 2018
    Publication date: December 10, 2020
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masataka SATO, Kayo KUMAKURA, Seiji YASUMOTO, Satoru IDOJIRI
  • Patent number: 10861733
    Abstract: The yield of a manufacturing process of a display device is increased. The productivity of a display device is increased. A hydrogen-containing layer is formed over a substrate. Then, an oxygen-containing layer is formed over the hydrogen-containing layer. After that, a first layer is formed over the oxygen-containing layer with the use of a material containing a resin or a resin precursor. Subsequently, first heat treatment is performed on the first layer, so that a resin layer is formed. Next, a layer to be peeled is formed over the resin layer. The layer to be peeled and the substrate are separated from each other. The first heat treatment is performed in an oxygen-containing atmosphere.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 8, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Seiji Yasumoto, Naoki Ikezawa, Satoru Idojiri, Shunpei Yamazaki
  • Patent number: 10861917
    Abstract: A flexible device is manufactured at low temperatures. A second substrate is bonded to a first substrate by a first adhesive layer. A first insulating layer, a transistor, and a second insulating layer are formed over the second substrate. Then, the first substrate and the second substrate are separated from each other while being heated at a first temperature. The heat resistant temperatures of the first substrate, the second substrate, and the first adhesive layer are a second temperature, a third temperature, and a fourth temperature, respectively. Each of the first insulating layer, the second insulating layer, and the transistor is formed at a temperature higher than or equal to room temperature and lower than the fourth temperature. The third temperature is higher than the fourth temperature and lower than the second temperature. The first temperature is higher than the fourth temperature and lower than the third temperature.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: December 8, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroki Adachi, Satoru Idojiri, Kensuke Yoshizumi
  • Patent number: 10854697
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 1, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi Takeshima
  • Publication number: 20200295057
    Abstract: A peeling method at low cost with high mass productivity is provided. A resin layer having a thickness greater than or equal to 0.1 ?m and less than or equal to 3 ?m is formed over a formation substrate using a photosensitive and thermosetting material, a transistor including an oxide semiconductor in a channel formation region is formed over the resin layer, the resin layer is irradiated with light using a linear laser device, and the transistor and the formation substrate are separated from each other. A first region and a second region which is thinner than the first region or an opening can be formed in the resin layer. In the case of forming a conductive layer functioning as an external connection terminal or the like to overlap with the second region or the opening of the resin layer, the conductive layer is exposed.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 17, 2020
    Inventors: Shunpei YAMAZAKI, Yasuharu HOSAKA, Satoru IDOJIRI, Kenichi OKAZAKI, Hiroki ADACHI, Daisuke KUBOTA
  • Patent number: 10763322
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: September 1, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi Takeshima
  • Publication number: 20200273935
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi TAKESHIMA
  • Publication number: 20200273936
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventors: Shunpei YAMAZAKI, Masakatsu OHNO, Hiroki ADACHI, Satoru IDOJIRI, Koichi TAKESHIMA
  • Publication number: 20200251547
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 6, 2020
    Inventors: Shunpei YAMAZAKI, Masakatsu OHNO, Hiroki ADACHI, Satoru IDOJIRI, Koichi TAKESHIMA
  • Publication number: 20200235323
    Abstract: The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
    Type: Application
    Filed: April 8, 2020
    Publication date: July 23, 2020
    Inventors: Masakatsu OHNO, Kayo KUMAKURA, Hiroyuki WATANABE, Seiji YASUMOTO, Satoru IDOJIRI, Hiroki ADACHI
  • Publication number: 20200203397
    Abstract: A technique is described in which a transistor formed using an oxide semiconductor film, a transistor formed using a polysilicon film, a transistor formed using an amorphous silicon film or the like, a transistor formed using an organic semiconductor film, a light-emitting element, or a passive element is separated from a glass substrate by light or heat. An oxide layer is formed over a light-transmitting substrate, a metal layer is selectively formed over the oxide layer, a resin layer is formed over the metal layer, an element layer is formed over the resin layer, a flexible film is fixed to the element layer, the resin layer and the metal layer are irradiated with light through the light-transmitting substrate, the light-transmitting substrate is separated, and a bottom surface of the metal layer is made bare.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 25, 2020
    Inventors: Hideaki KUWABARA, Hiroki ADACHI, Satoru IDOJIRI
  • Patent number: 10680020
    Abstract: A peeling method at low cost with high mass productivity is provided. A resin layer having a thickness greater than or equal to 0.1 ?m and less than or equal to 3 ?m is formed over a formation substrate using a photosensitive and thermosetting material, a transistor including an oxide semiconductor in a channel formation region is formed over the resin layer, the resin layer is irradiated with light using a linear laser device, and the transistor and the formation substrate are separated from each other. A first region and a second region which is thinner than the first region or an opening can be formed in the resin layer. In the case of forming a conductive layer functioning as an external connection terminal or the like to overlap with the second region or the opening of the resin layer, the conductive layer is exposed.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 9, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuharu Hosaka, Satoru Idojiri, Kenichi Okazaki, Hiroki Adachi, Daisuke Kubota
  • Patent number: 10629831
    Abstract: The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 21, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Kayo Kumakura, Hiroyuki Watanabe, Seiji Yasumoto, Satoru Idojiri, Hiroki Adachi
  • Patent number: 10586817
    Abstract: A technique is described in which a transistor formed using an oxide semiconductor film, a transistor formed using a polysilicon film, a transistor formed using an amorphous silicon film or the like, a transistor formed using an organic semiconductor film, a light-emitting element, or a passive element is separated from a glass substrate by light or heat. An oxide layer is formed over a light-transmitting substrate, a metal layer is selectively formed over the oxide layer, a resin layer is formed over the metal layer, an element layer is formed over the resin layer, a flexible film is fixed to the element layer, the resin layer and the metal layer are irradiated with light through the light-transmitting substrate, the light-transmitting substrate is separated, and a bottom surface of the metal layer is made bare.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: March 10, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideaki Kuwabara, Hiroki Adachi, Satoru Idojiri
  • Patent number: 10583641
    Abstract: A yield in the step of bonding two members together is improved. A bonding apparatus includes a stage capable of supporting a first member having a sheet-like shape, a fixing mechanism capable of fixing one end portion of a second member having a sheet-like shape so that the second member overlaps with the first member, and a pressurizing mechanism capable of moving from a side of the one end portion of the second member to a side of the other end portion and spreading a bonding layer under pressure between the first member and the second member. The first member and the second member are bonded to each other.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 10, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Yoshiharu Hirakata, Shingo Eguchi, Yasuhiro Jinbo, Hisao Ikeda, Kohei Yokoyama, Hiroki Adachi, Satoru Idojiri
  • Publication number: 20200067027
    Abstract: A high-yield fabricating method of a semiconductor device including a peeling step is provided. A peeling method includes a step of stacking and forming a first material layer and a second material layer over a substrate and a step of separating the first material layer and the second material layer from each other. The second material layer is formed over the substrate with the first material layer therebetween. The first material layer includes a first compound layer in contact with the second material layer and a second compound layer positioned closer to the substrate side than the first compound layer is. The first compound layer has the highest oxygen content among the layers included in the first material layer. The second compound layer has the highest nitrogen content among the layers included in the first material layer. The second material layer includes a resin.
    Type: Application
    Filed: March 6, 2018
    Publication date: February 27, 2020
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Seiji YASUMOTO, Kayo KUMAKURA, Yuka SATO, Satoru IDOJIRI, Hiroki ADACHI, Kenichi OKAZAKI