Patents by Inventor Satoru IDOJIRI

Satoru IDOJIRI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10475820
    Abstract: To provide a peeling method that achieves low cost and high mass productivity. The peeling method includes the steps of: forming a first layer with a photosensitive material over a formation substrate; forming a first region and a second region having a smaller thickness than the first region in the first layer by photolithography to form a resin layer having the first region and the second region; forming a transistor including an oxide semiconductor in a channel formation region over the first region in the resin layer; forming a conductive layer over the second region in the resin layer; and irradiating the resin layer with laser light to separate the transistor and the formation substrate.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 12, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Yanaka, Kayo Kumakura, Masataka Sato, Satoru Idojiri, Kensuke Yoshizumi, Mari Tateishi, Natsuko Takase
  • Publication number: 20190333976
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Shunpei YAMAZAKI, Masakatsu OHNO, Hiroki ADACHI, Satoru IDOJIRI, Koichi TAKESHIMA
  • Patent number: 10442172
    Abstract: A processing apparatus of a stack is provided. The stack includes two substrates attached to each other with a gap provided between their end portions. The processing apparatus includes a fixing mechanism that fixes part of the stack, a plurality of adsorption jigs that fix an outer peripheral edge of one of the substrates of the stack, and a wedge-shaped jig that is inserted into a corner of the stack. The plurality of adsorption jigs include a mechanism that allows the adsorption jigs to move separately in a vertical direction and a horizontal direction. The processing apparatus further includes a sensor sensing a position of the gap between the end portion in the stack. A tip of the wedge-shaped jig moves along a chamfer formed on an end surface of the stack. The wedge-shaped jig is inserted into the gap between the end portions in the stack.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: October 15, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kayo Kumakura, Tomoya Aoyama, Akihiro Chida, Kohei Yokoyama, Masakatsu Ohno, Satoru Idojiri, Hisao Ikeda, Hiroki Adachi, Yoshiharu Hirakata, Shingo Eguchi, Yasuhiro Jinbo
  • Patent number: 10369664
    Abstract: The yield of a manufacturing process of a semiconductor device is increased. The mass productivity of the semiconductor device is increased. The semiconductor device is manufactured by performing a step of performing plasma treatment on a first surface of a substrate; a step of forming a first layer over the first surface with the use of a material containing a resin or a resin precursor; a step of forming a resin layer by performing heat treatment on the first layer; and a step of separating the substrate and the resin layer from each other. In the plasma treatment, the first surface is exposed to an atmosphere containing one or more of hydrogen, oxygen, and water vapor.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: August 6, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Seiji Yasumoto, Naoto Goto, Satoru Idojiri
  • Patent number: 10355067
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 16, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi Takeshima
  • Patent number: 10343191
    Abstract: An object is to eliminate a harmful effect when a film is bonded by wiping an adhering sealant (30a). Characterized is a wiping device (200) including a stage (230) that supports a sheet-like member (220), a wiping means (210) that wipes an adhering object (30a) adhering on a peripheral portion of the sheet-like member (220), a wiping cloth (241) that is attachably and detachably provided for the wiping means (210), and a solvent (261) that adheres to the wiping cloth (241), in which the wiping means (210) is provided with the wiping cloth (241), makes the solvent (261) adhere to the wiping cloth (241), and wipes the adhering object (30a), or a stack manufacturing apparatus (1000) including such a wiping device (200).
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: July 9, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Kayo Kumakura, Satoru Idojiri, Yoshiharu Hirakata, Kohei Yokoyama
  • Patent number: 10312315
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: June 4, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi Takeshima
  • Publication number: 20190096977
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Inventors: Shunpei YAMAZAKI, Masakatsu OHNO, Hiroki ADACHI, Satoru IDOJIRI, Koichi TAKESHIMA
  • Patent number: 10236408
    Abstract: The yield of a manufacturing process of a semiconductor device is increased. The productivity of a semiconductor device is increased. A first material layer is formed over a substrate, a second material layer is formed over the first material layer, and the first material layer and the second material layer are separated from each other, so that a semiconductor device is manufactured. In addition, a stack including the first material layer and the second material layer is preferably heated before the separation. The first material layer includes one or more of hydrogen, oxygen, and water. The first material layer includes a metal oxide, for example. The second material layer includes a resin (e.g., polyimide or acrylic). The first material layer and the second material layer are separated from each other by cutting a hydrogen bond.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: March 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masataka Sato, Naoki Ikezawa, Junpei Yanaka, Satoru Idojiri
  • Patent number: 10211239
    Abstract: To increase the yield of the separation process. To produce display devices formed through the separation process with higher mass productivity. A first layer is formed using a material including a resin or a resin precursor over a substrate. Then, first heat treatment is performed on the first layer, whereby a first resin layer including a residue of an oxydiphthalic acid is formed. Then, a layer to be separated is formed over the first resin layer. Then, the layer to be separated and the substrate are separated from each other. The first heat treatment is performed in an atmosphere containing oxygen.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: February 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Seiji Yasumoto, Yuka Kobayashi, Satoru Idojiri
  • Publication number: 20190035820
    Abstract: To provide a peeling method that achieves low cost and high mass productivity. The peeling method includes the steps of: forming a first layer with a photosensitive material over a formation substrate; forming a first region and a second region having a smaller thickness than the first region in the first layer by photolithography to form a resin layer having the first region and the second region; forming a transistor including an oxide semiconductor in a channel formation region over the first region in the resin layer; forming a conductive layer over the second region in the resin layer; and irradiating the resin layer with laser light to separate the transistor and the formation substrate.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 31, 2019
    Inventors: Junpei YANAKA, Kayo KUMAKURA, Masataka SATO, Satoru IDOJIRI, Kensuke YOSHIZUMI, Mari TATEISHI, Natsuko TAKASE
  • Patent number: 10096621
    Abstract: To provide a peeling method that achieves low cost and high mass productivity. The peeling method includes the steps of: forming a first layer with a photosensitive material over a formation substrate; forming a first region and a second region having a smaller thickness than the first region in the first layer by photolithography to form a resin layer having the first region and the second region; forming a transistor including an oxide semiconductor in a channel formation region over the first region in the resin layer; forming a conductive layer over the second region in the resin layer; and irradiating the resin layer with laser light to separate the transistor and the formation substrate.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: October 9, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Yanaka, Kayo Kumakura, Masataka Sato, Satoru Idojiri, Kensuke Yoshizumi, Mari Tateishi, Natsuko Takase
  • Patent number: 10065808
    Abstract: An apparatus for supplying a support having a clean surface is provided. Alternatively, an apparatus for manufacturing a stack including a support and a remaining portion of a processed member whose one surface layer is separated is provided. A positioning portion, a slit formation portion, and a peeling portion are included. The positioning portion is provided with a first transfer mechanism of a stacked film including a support and a separator and a table for fixing the stacked film. The slit formation portion is provided with a cutter that can form a slit which does not pass through the separator. The peeling portion is provided with a second transfer mechanism and a peeling mechanism extending the separator and then peeling the separator. In addition, a pretreatment portion activating a support surface is included.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: September 4, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Kohei Yokoyama, Satoru Idojiri, Hisao Ikeda, Yasuhiro Jinbo, Hiroki Adachi, Yoshiharu Hirakata, Shingo Eguchi
  • Patent number: 10040175
    Abstract: A film-like member is supported in a flat shape by vacuum suction. A plurality of lift pins are arranged in a planar configuration and bear a film-like member placed on their upper ends. Tubular pads made of rubber for holding the film-like member by vacuum suction are attached to upper portions of the lift pins. The height of the lift pins can be adjusted by a screw fastening mechanism. The deformation of the film-like member can be corrected to a flat or concavely curved shape by suction from the pads. When the correction cannot be achieved by suction alone, the correction may be supplemented by ejection of air from a nozzle.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: August 7, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kayo Kumakura, Satoru Idojiri, Masakatsu Ohno, Koichi Takeshima, Yoshiharu Hirakata, Kohei Yokoyama
  • Publication number: 20180166524
    Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 14, 2018
    Inventors: Shunpei YAMAZAKI, Masakatsu OHNO, Hiroki ADACHI, Satoru IDOJIRI, Koichi TAKESHIMA
  • Publication number: 20180085859
    Abstract: The yield of a manufacturing process of a semiconductor device is increased. The mass productivity of the semiconductor device is increased. The semiconductor device is manufactured by performing a step of performing plasma treatment on a first surface of a substrate; a step of forming a first layer over the first surface with the use of a material containing a resin or a resin precursor; a step of forming a resin layer by performing heat treatment on the first layer; and a step of separating the substrate and the resin layer from each other. In the plasma treatment, the first surface is exposed to an atmosphere containing one or more of hydrogen, oxygen, and water vapor.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 29, 2018
    Inventors: Shunpei YAMAZAKI, Seiji YASUMOTO, Naoto GOTO, Satoru IDOJIRI
  • Patent number: 9925749
    Abstract: A yield in the step of bonding two members together is improved. A bonding apparatus includes a stage capable of supporting a first member having a sheet-like shape, a fixing mechanism capable of fixing one end portion of a second member having a sheet-like shape so that the second member overlaps with the first member, and a pressurizing mechanism capable of moving from a side of the one end portion of the second member to a side of the other end portion and spreading a bonding layer under pressure between the first member and the second member. The first member and the second member are bonded to each other.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 27, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Yoshiharu Hirakata, Shingo Eguchi, Yasuhiro Jinbo, Hisao Ikeda, Kohei Yokoyama, Hiroki Adachi, Satoru Idojiri
  • Publication number: 20180072033
    Abstract: A yield in the step of bonding two members together is improved. A bonding apparatus includes a stage capable of supporting a first member having a sheet-like shape, a fixing mechanism capable of fixing one end portion of a second member having a sheet-like shape so that the second member overlaps with the first member, and a pressurizing mechanism capable of moving from a side of the one end portion of the second member to a side of the other end portion and spreading a bonding layer under pressure between the first member and the second member. The first member and the second member are bonded to each other.
    Type: Application
    Filed: November 6, 2017
    Publication date: March 15, 2018
    Inventors: Masakatsu OHNO, Yoshiharu HIRAKATA, Shingo EGUCHI, Yasuhiro JINBO, Hisao IKEDA, Kohei YOKOYAMA, Hiroki ADACHI, Satoru IDOJIRI
  • Publication number: 20180061638
    Abstract: The yield of a manufacturing process of a semiconductor device is increased. The productivity of a semiconductor device is increased. A first material layer is formed over a substrate, a second material layer is formed over the first material layer, and the first material layer and the second material layer are separated from each other, so that a semiconductor device is manufactured. In addition, a stack including the first material layer and the second material layer is preferably heated before the separation. The first material layer includes one or more of hydrogen, oxygen, and water. The first material layer includes a metal oxide, for example. The second material layer includes a resin (e.g., polyimide or acrylic). The first material layer and the second material layer are separated from each other by cutting a hydrogen bond.
    Type: Application
    Filed: August 28, 2017
    Publication date: March 1, 2018
    Inventors: Shunpei YAMAZAKI, Masataka SATO, Naoki IKEZAWA, Junpei YANAKA, Satoru IDOJIRI
  • Publication number: 20180061639
    Abstract: The yield of a manufacturing process of a semiconductor device is increased. The mass productivity of a semiconductor device is increased. A semiconductor device is manufactured by forming a first material layer over a substrate; forming a second material layer over the first material layer; and separating the first material layer and the second material layer from each other; and heating the first material layer and the second material layer that are stacked before the separation. The first material layer includes a gas containing hydrogen, oxygen, or hydrogen and oxygen (e.g., water) in a metal oxide, for example. The second material layer includes a resin. The first material layer and the second material layer are separated from each other by a break of a hydrogen bond. Specifically water is separated out at the interface or near the interface, and then adhesion is reduced due to the water present.
    Type: Application
    Filed: August 28, 2017
    Publication date: March 1, 2018
    Inventors: Shunpei YAMAZAKI, Masataka SATO, Seiji YASUMOTO, Kayo KUMAKURA, Satoru IDOJIRI