Patents by Inventor Satoshi Teramoto

Satoshi Teramoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6831333
    Abstract: To provide a thin film transistor having a low OFF characteristic and to provide P-channel type and N-channel type thin film transistors where a difference in characteristics of the P-channel type and the N-channel type thin film transistors is corrected, a region 145 having a P-type behavior more potential than that of a drain region 146 is arranged between a channel forming region 134 and the drain region 146 in the P-channel type thin film transistor whereby the P-channel type thin film transistor having the low OFF characteristic can be provided and a low concentration impurity region 136 is arranged between a channel forming region 137 and a drain region 127 in the N-channel type thin film transistor whereby the N-channel type thin film transistor having the low OFF characteristic and where deterioration is restrained can be provided.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: December 14, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Satoshi Teramoto
  • Patent number: 6830617
    Abstract: In a method for manufacturing a crystalline silicon film by utilizing a metal element that promotes the crystallization of silicon, an influence of this metal element can be suppressed. A nickel element 104 is retained in contact with a surface of an amorphous silicon film 103 patterned to form a predetermined pattern in such a manner that the metal element is brought into contact with the amorphous silicon film 103 patterned to form a predetermined pattern. Next, the crystalline silicon film 105 is formed by a heat treatment. At this time, the nickel element is segregated in the edge region of the pattern. Further, a crystalline silicon film 100 having no region to which the metal element concentrated by patterning using a mask 107. By using this crystalline silicon film 100 as an active layer, the thin film transistor is fabricated.
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: December 14, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hisashi Ohtani, Akiharu Miyanaga, Satoshi Teramoto, Shunpei Yamazaki
  • Publication number: 20040211962
    Abstract: A pair of substrates forming the active matrix liquid crystal display are fabricated from resinous substrates having transparency and flexibility. A thin-film transistor has a semiconductor film formed on a resinous layer formed on one resinous substrate. The resinous layer is formed to prevent generation of oligomers on the surface of the resinous substrate during formation of the film and to planarize the surface of the resinous substrate.
    Type: Application
    Filed: May 25, 2004
    Publication date: October 28, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Satoshi Teramoto
  • Publication number: 20040191945
    Abstract: In an annealing process in which laser light is irradiated to a semiconductor thin film, a refractive index of the semiconductor thin film after laser light irradiation is measured and conditions for the next laser light irradiation are adjusted based on the measured refractive index value. For example, laser light irradiation conditions are adjusted so that semiconductor thin films always have the same refractive index. As a result, the annealing can be performed under the same conditions at every laser light irradiation even if the laser light irradiation conditions vary unavoidably.
    Type: Application
    Filed: April 5, 2004
    Publication date: September 30, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoaki Yamaguchi, Koichiro Tanaka, Satoshi Teramoto
  • Publication number: 20040183077
    Abstract: A pair of substrates forming the active matrix liquid crystal display are fabricated from resinous substrates having transparency and flexibility. A thin-film transistor has a semiconductor film formed on a resinous layer formed on one resinous substrate. The resinous layer is formed to prevent generation of oligomers on the surface of the resinous substrate during formation of the film and to planarize the surface of the resinous substrate.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 23, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Satoshi Teramoto
  • Publication number: 20040183076
    Abstract: A pair of substrates forming the active matrix liquid crystal display are fabricated from resinous substrates having transparency and flexibility. A thin-film transistor has a semiconductor film formed on a resinous layer formed on one resinous substrate. The resinous layer is formed to prevent generation of oligomers on the surface of the resinous substrate during formation of the film and to planarize the surface of the resinous substrate.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 23, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Satoshi Teramoto
  • Patent number: 6794681
    Abstract: There are provided a substrate of a semiconductor device and a fabrication method thereof which allow to suppress impurity from turning around from a glass or quartz substrate in fabrication steps of a TFT. An insulating film is deposited so as to surround the glass substrate by means of reduced pressure thermal CVD. It allows to suppress the impurity from infiltrating from the glass substrate to an active region of the TFT in the later process.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: September 21, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Setsuo Nakajima, Shunpei Yamazaki, Hisashi Ohtani, Satoshi Teramoto, Toshiji Hamatani
  • Patent number: 6790749
    Abstract: An object of this invention is to provide a semiconductor device manufacturing method in which a semiconductor film is formed over a substrate, the semiconductor film is crystallized by irradiating a laser light, a silicon oxide film is formed in contact with the crystalline semiconductor film by using organic silane, a gate electrode is formed in contact with the silicon oxide film, an impurity element is introduced into the crystalline semiconductor film, the impurity element is activated, an interlayer insulating film is formed over the gate electrode, and then a wiring comprising aluminum is formed over the interlayer insulating film.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: September 14, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuhiko Takemura, Hongyong Zhang, Satoshi Teramoto
  • Publication number: 20040173849
    Abstract: There is disclosed a hybrid circuit in which a circuit formed by TFTs is integrated with an RF filter. The TFTs are fabricated on a quartz substrate. A ceramic filter forming the RF filter is fabricated on another substrate. Terminals extend through the quartz substrate. The TFTs are connected with the ceramic filter via the terminals. Thus, an RF module is constructed.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 9, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd, a Japan corporation
    Inventors: Shunpei Yamazaki, Satoshi Teramoto
  • Patent number: 6784453
    Abstract: In the production of thin film transistor (TFT), a gate insulating film is formed to cover an active layer, a titanium nitride film is formed on the gate insulating film, and an aluminum film used as the gate electrode is formed on the titanium nitride film. The resulted configuration prevents the etching of the aluminum film from the insulating film side even if the etchant of aluminum enters the recessed portion at the edge of the active layer during the patterning of the gate electrode. Also in the anodizing process, when an oxide film is formed on the surface of the aluminum film, the oxidation of aluminum from the gate insulating film side is prevented even when the electrolyte solution enters the recessed portion at the edge of the active layer.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: August 31, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Minoru Miyazaki, Akane Murakami, Satoshi Teramoto
  • Publication number: 20040165831
    Abstract: To suppress the occurrence of a failure caused by static electricity in the manufacturing process of an active matrix type display device in which an active matrix circuit and peripheral drive circuits are integrated on a glass substrate, a protective capacitor to be connected to a short ring is formed using a semiconductor layer made from the same material as the active layer of a thin film transistor present under the short ring. This protective capacitor has a function to absorb an electric pulse generated in the plasma using process. Discharge patterns are provided to prevent an electric pulse from affecting each circuit.
    Type: Application
    Filed: November 4, 2003
    Publication date: August 26, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd. a Japan Corporation
    Inventors: Hongyong Zhang, Satoshi Teramoto
  • Publication number: 20040141140
    Abstract: There is provided a configuration of an active matrix type liquid crystal display integrated with a peripheral driving circuit in which the surface area of regions excluding pixels is minimized. Further, the reliability of an apparatus having such a configuration is improved.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 22, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd., a Japan corporation
    Inventors: Hongyong Zhang, Shunpei Yamazaki, Satoshi Teramoto, Yoshiharu Hirakata
  • Publication number: 20040141139
    Abstract: An active matrix liquid crystal display having improved reliability. Pixel regions and a peripheral driver circuit are integrally packed on the display. TFTs forming the peripheral driver circuit are located inside a sealing material layer on the side of a liquid crystal material, thus protecting the peripheral driver circuit from external moisture and contaminants. This enhances the long-term reliability of the peripheral driver circuit. Pixel TFTs are arranged in pixel regions. The leads going from the TFTs forming the peripheral driver circuit to the pixel TFTs are shortened. This results in a reduction in the resistance. As a result, the display characteristics are improved.
    Type: Application
    Filed: January 12, 2004
    Publication date: July 22, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd., a Japan corporation
    Inventors: Shunpei Yamazaki, Jun Koyama, Yuji Kawasaki, Toshimitsu Konuma, Satoshi Teramoto, Yoshiharu Hirakata
  • Patent number: 6753213
    Abstract: A laser processing apparatus provides a heating chamber, a chamber for laser light irradiation and a robot arm, wherein a temperature of a substrate on which a silicon film to be irradiated with laser light is formed is heated to 450 to 750° C. in the heating chamber followed by irradiating the silicon film with laser light so that a silicon film having a single crystal or a silicon film that can be regarded as the single crystal can be obtained.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: June 22, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Teramoto, Hisashi Ohtani, Akiharu Miyanaga, Toshiji Hamatani, Shunpei Yamazaki
  • Publication number: 20040108503
    Abstract: There is disclosed a method of fabricating a thin-film transistor having excellent characteristics. Nickel element is held in contact with selected regions of an amorphous silicon film. Then, thermal processing is performed to crystallize the amorphous film. Subsequently, thermal processing is carried out in an oxidizing ambient containing a halogen element to form a thermal oxide film. At this time, the crystallinity is improved. Also, gettering of the nickel element proceeds. This crystalline silicon film consists of crystals grown radially from a number of points. Consequently, the thin-film transistor having excellent characteristics can be obtained.
    Type: Application
    Filed: November 14, 2003
    Publication date: June 10, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Jun Koyama, Yasushi Ogata, Masahiko Hayakawa, Mitsuaki Osame, Hisashi Ohtani, Toshiji Hamatani
  • Patent number: 6743667
    Abstract: An amorphous semiconductor film comprising silicon is provided with a metal element which is capable of promoting a crystallization of silicon. Then, the semiconductor film is crystallized by hating at a relatively low temperature. After introducing impurity ions into source and drain regions of the semiconductor film, the source and drain regions are recrystallized by heating. During the recrystallization, the channel region having crystallinity functions as crystalline nuclei. Accordingly, it is possible to avoid defects occurring in the boundary regions between the channel region and source/drain regions.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: June 1, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masamitsu Hiroki, Yasuhiko Takemura, Mutsuo Yamamoto, Naoaki Yamaguchi, Satoshi Teramoto
  • Patent number: 6744069
    Abstract: Nickel is selectively held in contact with a particular region of an amorphous silicon film. Crystal growth parallel with a substrate is effected by performing a heat treatment. A thermal oxidation film is formed by performing a heat treatment in an oxidizing atmosphere containing a halogen element. During this step, the crystallinity is improved and the gettering of nickel elements proceeds. A thin-film transistor is formed so that the direction connecting source and drain regions coincides with the above crystal growth direction. As a result, a TFT having superior characteristics such as a mobility larger than 200 cm2/Vs and an S value smaller than 100 mV/dec. can be obtained.
    Type: Grant
    Filed: January 17, 1997
    Date of Patent: June 1, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Jun Koyama, Yasushi Ogata, Masahiko Hayakawa, Mitsuaki Osame, Hisashi Ohtani, Toshiji Hamatani
  • Patent number: 6716283
    Abstract: In an annealing process in which laser light is irradiated to a semiconductor thin film, a refractive index of the semiconductor thin film after laser light irradiation is measured and conditions for the next laser light irradiation are adjusted based on the measured refractive index value. For example, laser light irradiation conditions are adjusted so that semiconductor thin films always have the same refractive index. As a result, the annealing can be performed under the same conditions at every laser light irradiation even if the laser light irradiation conditions vary unavoidably.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: April 6, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoaki Yamaguchi, Koichiro Tanaka, Satoshi Teramoto
  • Patent number: 6713330
    Abstract: Method of fabricating TFTs starts with forming a nickel film selectively on a bottom layer which is formed on a substrate. An amorphous silicon film is formed on the nickel film and heated to crystallize it. The crystallized film is irradiated with infrared light to anneal it. Thus, a crystalline silicon film having excellent crystallinity is obtained. TFTs are built, using this crystalline silicon film.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: March 30, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Satoshi Teramoto
  • Patent number: 6710410
    Abstract: There is disclosed a hybrid circuit in which a circuit formed by TFTs is integrated with an RF filter. The TFTs are fabricated on a quartz substrate. A ceramic filter forming the RF filter is fabricated on another substrate. Terminals extend through the quartz substrate. The TFTs are connected with the ceramic filter via the terminals. Thus, an RF module is constructed.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: March 23, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto