Patents by Inventor Saurabh Ullal

Saurabh Ullal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240057245
    Abstract: The embodiments disclosed herein are directed to systems and devices which utilize multiple microwave plasmas can be used to increase the efficiency of traditional single microwave plasma systems. Disclosed herein is a microwave plasma apparatus for processing materials which includes a reaction chamber, a plurality of microwave plasma applicators in communication with the reaction chamber, one or more microwave radiation sources, at least one waveguide for guiding microwave radiation from the one or more microwave radiations sources to multiple plasma applicators, and a material feeding system in communication with the reaction chamber.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 15, 2024
    Inventors: Michael C. Kozlowski, John Colwell, Richard K. Holman, Saurabh Ullal
  • Publication number: 20230377848
    Abstract: The embodiments disclosed herein are directed to systems, methods, and devices for processing a material using a microwave plasma apparatus with an interior liner. In some embodiments, the liner comprises a reduction resistant material layer in direct contact with a hydrogen-containing plasma of a plasma processing apparatus. In some embodiments, the liner may comprise a sleeve disposed between a plasma and one or more concentric tubes of a plasma processing apparatus. In some embodiments, the liner may comprise a coating of material applied to the one or more concentric tubes. In some embodiments, the liner may comprise a flexible ceramic material, such as a ceramic ribbon that is coiled or wrapped in a helix shape spiraling around the interior of the one or more concentric tubes.
    Type: Application
    Filed: May 19, 2023
    Publication date: November 23, 2023
    Inventors: Richard K. Holman, Saurabh Ullal
  • Publication number: 20230330747
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Application
    Filed: September 2, 2022
    Publication date: October 19, 2023
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Publication number: 20230247751
    Abstract: The embodiments disclosed herein are directed to systems and devices which utilize multiple microwave plasmas can be used to increase the efficiency of traditional single microwave plasma systems. Disclosed herein is a microwave plasma apparatus for processing materials which includes a reaction chamber, a plurality of microwave plasma applicators in communication with the reaction chamber, one or more microwave radiation sources, at least one waveguide for guiding microwave radiation from the one or more microwave radiations sources to multiple plasma applicators, and a material feeding system in communication with the reaction chamber.
    Type: Application
    Filed: January 25, 2023
    Publication date: August 3, 2023
    Inventors: Michael C. Kozlowski, John Colwell, Richard K. Holman, Saurabh Ullal
  • Publication number: 20230001376
    Abstract: The embodiments disclosed herein are directed to systems, methods, and devices for producing materials having desired characteristics using microwave plasma. In some embodiments, performing an iterative process may be used to produce a material having desired characteristics, the process comprising forming a microwave plasma within the reaction chamber, analyzing the plasma to determine if properties of the plasma are within a range expected to produce the desired characteristics of the material; and adjusting, based on the analysis of the plasma, one or more parameters. In some embodiments, an extension tube is provided within a microwave plasma apparatus to extend the length of a microwave plasma.
    Type: Application
    Filed: August 25, 2022
    Publication date: January 5, 2023
    Inventors: Michael C. Kozlowski, Jared Majcher, Makhlouf Redjdal, Pawel Matys, Saurabh Ullal
  • Publication number: 20230001375
    Abstract: The embodiments disclosed herein are directed to systems, methods, and devices for producing materials having desired characteristics using microwave plasma. In some embodiments, performing an iterative process may be used to produce a material having desired characteristics, the process comprising forming a microwave plasma within the reaction chamber, analyzing the plasma to determine if properties of the plasma are within a range expected to produce the desired characteristics of the material; and adjusting, based on the analysis of the plasma, one or more parameters. In some embodiments, an extension tube is provided within a microwave plasma apparatus to extend the length of a microwave plasma.
    Type: Application
    Filed: June 24, 2022
    Publication date: January 5, 2023
    Inventors: Michael C. Kozlowski, Jared Majcher, Makhlouf Redjdal, Pawel Matys, Saurabh Ullal
  • Patent number: 11539911
    Abstract: In general, the present disclosure is directed to an artificial window system that can simulate the user experience of a traditional window in environments where exterior walls are unavailable or other constraints make traditional windows impractical. In an embodiment, an artificial window consistent with the present disclosure includes a window panel, a panel driver, and a camera device. The camera device captures a plurality of image frames representative of an outdoor environment and provides the same to the panel driver. A controller of the panel driver sends the image frames as a video signal to cause the window panel to visually output the same. The window panel may further include light panels, and the controller may extract light characteristics from the captured plurality of image frames to send signals to the light panels to cause the light panels to mimic outdoor lighting conditions.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: December 27, 2022
    Assignee: DPA VENTURES, INC.
    Inventors: Pooja Devendran, Partha Dutta, Saurabh Ullal, Anand Devendran, Kedar Gupta, Mark Pettus
  • Patent number: 11471941
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: October 18, 2022
    Assignee: 6K Inc.
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Patent number: 11465201
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: October 11, 2022
    Assignee: 6K Inc.
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Patent number: 11273491
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: March 15, 2022
    Assignee: 6K Inc.
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Publication number: 20210129216
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 6, 2021
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Publication number: 20210078072
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 18, 2021
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Publication number: 20200288081
    Abstract: In general, the present disclosure is directed to an artificial window system that can simulate the user experience of a traditional window in environments where exterior walls are unavailable or other constraints make traditional windows impractical. In an embodiment, an artificial window consistent with the present disclosure includes a window panel, a panel driver, and a camera device. The camera device captures a plurality of image frames representative of an outdoor environment and provides the same to the panel driver. A controller of the panel driver sends the image frames as a video signal to cause the window panel to visually output the same. The window panel may further include light panels, and the controller may extract light characteristics from the captured plurality of image frames to send signals to the light panels to cause the light panels to mimic outdoor lighting conditions.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Pooja Devendran, Partha Dutta, Saurabh Ullal, Anand Devendran, Kedar Gupta, Mark Pettus, MD
  • Publication number: 20200215606
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 9, 2020
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Patent number: 10701304
    Abstract: In general, the present disclosure is directed to an artificial window system that can simulate the user experience of a traditional window in environments where exterior walls are unavailable or other constraints make traditional windows impractical. In an embodiment, an artificial window consistent with the present disclosure includes a window panel, a panel driver, and a camera device. The camera device captures a plurality of image frames representative of an outdoor environment and provides the same to the panel driver. A controller of the panel driver sends the image frames as a video signal to cause the window panel to visually output the same. The window panel may further include light panels, and the controller may extract light characteristics from the captured plurality of image frames to send signals to the light panels to cause the light panels to mimic outdoor lighting conditions.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: June 30, 2020
    Assignee: DPA VENTURES, INC.
    Inventors: Pooja Devendran, Partha Dutta, Saurabh Ullal, Anand Devendran, Kedar Gupta, Mark Pettus
  • Patent number: 10639712
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 5, 2020
    Assignee: Amastan Technologies Inc.
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Publication number: 20190381564
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, and recycled used powder. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 19, 2019
    Inventors: John Barnes, Aaron Bent, Kamal Hadidi, Makhlouf Redjdal, Scott Turchetti, Saurabh Ullal, Ning Duanmu, Michael C. Kozlowski
  • Publication number: 20180367751
    Abstract: In general, the present disclosure is directed to an artificial window system that can simulate the user experience of a traditional window in environments where exterior walls are unavailable or other constraints make traditional windows impractical. In an embodiment, an artificial window consistent with the present disclosure includes a window panel, a panel driver, and a camera device. The camera device captures a plurality of image frames representative of an outdoor environment and provides the same to the panel driver. A controller of the panel driver sends the image frames as a video signal to cause the window panel to visually output the same. The window panel may further include light panels, and the controller may extract light characteristics from the captured plurality of image frames to send signals to the light panels to cause the light panels to mimic outdoor lighting conditions.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 20, 2018
    Inventors: Pooja Devendran, Partha Dutta, Saurabh Ullal, Anand Devendran, Kedar Gupta, Mark Pettus
  • Patent number: 9728429
    Abstract: Parasitic plasma in voids in a component of a plasma processing chamber can be eliminated by covering electrically conductive surfaces in an interior of the voids with a sleeve. The voids can be gas holes, lift pin holes, helium passages, conduits and/or plenums in chamber components such as an upper electrode and a substrate support.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: August 8, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Anthony Ricci, Saurabh Ullal, Larry Martinez
  • Patent number: 9082805
    Abstract: The present invention provides a reliable, non-invasive, electrical test method for predicting satisfactory performance of electrostatic chucks (ESCs). In accordance with an aspect of the present invention, a parameter, e.g., impedance, of an ESC is measured over a frequency band to generate a parameter functions. This parameter function may be used to establish predetermined acceptable limits of the parameter within the frequency band.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: July 14, 2015
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Saurabh Ullal, Tuochuan Huang, Yan Fang, Jon McChesney