Patents by Inventor Scott A. Stevenson
Scott A. Stevenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7923404Abstract: Methods of making catalysts for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo) and phosphorus (P), where the catalyst has a pore size distribution including at least 50% medium pores and if bismuth is present, a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12.Type: GrantFiled: May 31, 2010Date of Patent: April 12, 2011Assignee: Saudi Basic Industries CorporationInventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
-
Patent number: 7902413Abstract: This invention relates to a process for the aromatization of C6 to C12 alkanes, such as hexane, heptane and octane, to aromatics, such as benzene, ethyl benzene, toluene and xylenes, with a germanium-containing zeolite catalyst. The catalyst is a non-acidic aluminum-silicon-germanium zeolite on which a noble metal, such as platinum, has been deposited. The zeolite structure may be of MFI, BEA, MOR, LTL or MTT. The zeolite is made non-acidic by being base-exchanged with an alkali metal or alkaline earth metal, such as cesium, potassium, sodium, rubidium, barium, calcium, magnesium and mixtures thereof, to reduce acidity. The catalyst is sulfur tolerant and may be pretreated with a sulfur compound, i.e., sulfided. The hydrocarbon feed may contain sulfur up to 1000 ppm. The present invention could be applicable to a feedstream which is predominantly paraffinic and/or low in naphthenes. Lowering the hydrogen to hydrocarbon ratio increases conversion and aromatics selectivity.Type: GrantFiled: April 12, 2007Date of Patent: March 8, 2011Assignee: Saudi Basic Industries CorporationInventors: Scott A. Stevenson, Dustin B. Farmer, Scott F. Mitchell, Gopalakrishnan G. Juttu, Alla K. Khanmamedova, Paul E. Ellis
-
Publication number: 20100323882Abstract: Methods of making catalysts for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo) and phosphorus (P), where the catalyst has a pore size distribution including at least 50% medium pores and if bismuth is present, a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12.Type: ApplicationFiled: May 31, 2010Publication date: December 23, 2010Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
-
Patent number: 7851397Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehydes to unsaturated acids is disclosed where the catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), or mixtures or combinations thereof, where the bismuth component was dissolved in an organic acid solution prior to adding the bismuth containing solution to a solution of the other components. Methods for making and using the catalysts are also disclosed.Type: GrantFiled: July 25, 2005Date of Patent: December 14, 2010Assignee: Saudi Basic Industries CorporationInventors: Wugeng Liang, Scott A. Stevenson, Angie McGuffey
-
Publication number: 20100280297Abstract: This invention is for a catalyst for conversion of alkanes having two to six carbon atoms per molecule to aromatics. The catalyst is a MFI zeolite with a crystallite size of less than 15 microns with, in addition to silicon and aluminum, germanium as a framework element. Platinum is deposited on the zeolite. The zeolite may contain other optional tetravalent and trivalent elements in the zeolite framework. The catalyst is synthesized by preparing a zeolite containing aluminum, silicon, germanium and, optionally, other elements in the framework, calcining the zeolite and depositing platinum on the zeolite. The catalyst may be used for aromatization of alkanes, such as propane, to aromatics, such as benzene, toluene and xylenes.Type: ApplicationFiled: April 29, 2009Publication date: November 4, 2010Applicant: Saudi Basic Industries CorporationInventors: Paul E. Ellis, Gopalakridhnan G. Juttu, Alla K. Khanmamedova, Scott F. Mitchell, Scott A. Stevenson
-
Publication number: 20100260647Abstract: An integrated facility is disclosed for simultaneous production of butanal and methacrylic acid products where the facility utilizes a mixed methacrolein and isobutanal stream to make methacrylic acid. The facility is also designed to utilize downstream n-butanal products such as n-butanol and/or 2-ethyl-hexanol to make butyl-methacrylates and 2-ethyl-hexyl-methacrylate. A method is also disclosed which integrates the production of butanal derived products and methacrylic acid derived products.Type: ApplicationFiled: January 13, 2010Publication date: October 14, 2010Inventors: Scott A. Stevenson, Wugeng Liang
-
Publication number: 20100240925Abstract: Methods for making unsaturated acids using catalysts for oxidation of unsaturated and/or Saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo) and phosphorus (P), where the catalyst has a pore size distribution including at least 50% medium pores and if bismuth is present, a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12.Type: ApplicationFiled: May 31, 2010Publication date: September 23, 2010Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
-
Patent number: 7745675Abstract: This invention relates to a process for regeneration of a zeolite catalyst, specifically an aluminosilicate zeolite with germanium substituted in the framework for silicon and with platinum deposited on the zeolite. The catalyst may be used in a process for aromatization of alkanes, specifically C2-C8 alkanes. The regeneration process 1) removes coke and sulfur from the catalyst via oxidation, 2) redisperses platinum on the surface of the catalyst via chlorine gas, 3) removes chlorine and bind Pt to the surface of the zeolite by steaming, 4) reduces the catalyst in hydrogen, and 5) optionally, resulfides the catalyst. The zeolite may be a MFI zeolite. The catalyst may be bound with an inert material which does not act as a binding site for platinum during the regeneration process, for example, silica.Type: GrantFiled: December 20, 2006Date of Patent: June 29, 2010Assignee: Saudi Basic Industries CorporationInventors: Paul E. Ellis, Gopalakrishnan G. Juttu, Alla K. Khanmamedova, Scott F. Mitchell, Scott A. Stevenson
-
Patent number: 7732367Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), or mixtures or combinations thereof, where the catalyst has at least 57% medium pores and a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12. Methods for making and using such catalysts are also disclosed.Type: GrantFiled: July 25, 2005Date of Patent: June 8, 2010Assignee: Saudi Basic Industries CorporationInventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
-
Patent number: 7649111Abstract: A heteropolyacid catalyst for oxidation of isobutyraldehyde, methacrolein or mixtures or combinations thereof to methacrylic acid is disclosed where the heteropolyacid catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), and a first component including bismuth (Bi) and/or boron (B). The heteropolyacid catalyst can also optionally include a second component including potassium (K), rubidium (Rb), cesium (Cs), and/or thallium (Tl) and optionally a third component including antimony (Sb), cerium (Ce), niobium (Nb), indium (In), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), arsenic (As), silver (Ag), zinc (Zn), germanium (Ge), gallium (Ga), zirconium (Zr), magnesium (Mg), barium (Ba), lead (Pb), tin (Sn), titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), tungsten (W), and/or lanthanum (La). The heteropolyacid catalyst can also include an ammonium-containing compound designed to increase a value of medium pores in the final heteropolyacid catalyst.Type: GrantFiled: July 25, 2005Date of Patent: January 19, 2010Assignee: Saudi Basic Industries CorporationInventors: Wugeng Liang, Scott A. Stevenson, Angie McGuffey, Joseph R. Linzer
-
Patent number: 7649112Abstract: An integrated facility is disclosed for simultaneous production of butanal and methacrylic acid products where the facility utilizes a mixed methacrolein and isobutanal stream to make methacrylic acid. The facility is also designed to utilize downstream n-butanal products such as n-butanol and/or 2-ethyl-hexanol to make butyl-methacrylates and 2-ethyl-hexyl-methacrylate. A method is also disclosed which integrates the production of butanal derived products and methacrylic acid derived products.Type: GrantFiled: July 25, 2005Date of Patent: January 19, 2010Assignee: Saudi Basic Industries CorporationInventors: Scott A. Stevenson, Wugeng Liang
-
Patent number: 7501377Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3-5.0, c:a=2.0-6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95-1.10.Type: GrantFiled: May 24, 2007Date of Patent: March 10, 2009Assignee: Saudi Basic Industries CorporationInventors: Wugeng Liang, Scott A. Stevenson, James W. Kauffman, John S. Ledford, Joseph R. Linzer
-
Publication number: 20080293989Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite having germanium and at least one selected from the group consisting of tin and boron incorporated into the zeolite framework and at least one metal selected from Group 10 deposited on the zeolite. The catalyst is prepared by synthesizing a zeolite having germanium and at least one selected from the group consisting of tin and boron incorporated into the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.Type: ApplicationFiled: May 22, 2008Publication date: November 27, 2008Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Alla K. Khanmamedova, Scott A. Stevenson, Scott F. Mitchell, Dustin B. Farmer, Jim Vartuli
-
Publication number: 20080293988Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.Type: ApplicationFiled: May 22, 2008Publication date: November 27, 2008Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Scott F. Mitchell, Alla K. Khanmamedova, Scott A. Stevenson, Jim Vartuli
-
Publication number: 20080293990Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a medium pore germanium zeolite, a germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). At least one metal selected from Group 10 is deposited on the medium pore zeolite and, optionally on the germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). The catalyst is prepared by synthesizing a medium pore zeolite, an aluminophosphate (AlPO) or a silicoaluminophosphate (SAPO) with germanium incorporated into the framework and calcining the medium pore germanium zeolite, germanium aluminophosphate (AlPO) or germanium silicoaluminophosphate (SAPO). At least one metal may be deposited on the germanium zeolite, germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO).Type: ApplicationFiled: May 22, 2008Publication date: November 27, 2008Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Scott A. Stevenson, Alla K. Khanmamedova, Dustin B. Farmer, Scott F. Mitchell, Jim Vartuli
-
Publication number: 20080293987Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a germanium zeolite, such as Ge-ZSM-5, on which at least two metals, platinum and at least one other metal selected from Group 7, Group 8, Group 9, Group 10 and tin, are deposited on the germanium zeolite. Examples of the other metal are iridium, rhenium, palladium, ruthenium, rhodium, iron, cobalt and tin. The catalyst is prepared by synthesizing a germanium zeolite; depositing platinum and at least one other metal on the germanium zeolite; and calcining after preparation of the zeolite, before depositing the metals or after depositing the metals. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with a hydrocarbon stream containing alkanes, olefins and mixtures thereof having 2 to 12 carbon atoms per molecule and recovering the product.Type: ApplicationFiled: May 22, 2008Publication date: November 27, 2008Inventors: Alla K. Khanmamedova, Scott F. Mitchell, Scott A. Stevenson, Gopalakrishnan G. Juttu
-
Publication number: 20080255398Abstract: This invention relates to a process for the aromatization of C6 to C12 alkanes, such as hexane, heptane and octane, to aromatics, such as benzene, ethyl benzene, toluene and xylenes, with a germanium-containing zeolite catalyst. The catalyst is a non-acidic aluminum-silicon-germanium zeolite on which a noble metal, such as platinum, has been deposited. The zeolite structure may be of MFI, BEA, MOR, LTL or MTT. The zeolite is made non-acidic by being base-exchanged with an alkali metal or alkaline earth metal, such as cesium, potassium, sodium, rubidium, barium, calcium, magnesium and mixtures thereof, to reduce acidity. The catalyst is sulfur tolerant and may be pretreated with a sulfur compound, i.e., sulfided. The hydrocarbon feed may contain sulfur up to 1000 ppm. The present invention could be applicable to a feedstream which is predominantly paraffinic and/or low in naphthenes. Lowering the hydrogen to hydrocarbon ratio increases conversion and aromatics selectivity.Type: ApplicationFiled: April 12, 2007Publication date: October 16, 2008Inventors: Scott A. Stevenson, Dustin B. Farmer, Scott F. Mitchell, Gopalakrishnan G. Juttu, Alla K. Khanmamedova, Paul E. Ellis
-
Publication number: 20080154079Abstract: This invention relates to a process for regeneration of a zeolite catalyst, specifically an aluminosilicate zeolite with germanium substituted in the framework for silicon and with platinum deposited on the zeolite. The catalyst may be used in a process for aromatization of alkanes, specifically C2-C8 alkanes. The regeneration process 1) removes coke and sulfur from the catalyst via oxidation, 2) redisperses platinum on the surface of the catalyst via chlorine gas, 3) removes chlorine and bind Pt to the surface of the zeolite by steaming, 4) reduces the catalyst in hydrogen, and 5) optionally, resulfides the catalyst. The zeolite may be a MFI zeolite. The catalyst may be bound with an inert material which does not act as a binding site for platinum during the regeneration process, for example, silica.Type: ApplicationFiled: December 20, 2006Publication date: June 26, 2008Inventors: Paul E. Ellis, Gopalakrishnan G. Juttu, Alla K. Khanmamedova, Scott F. Mitchell, Scott A. Stevenson
-
Patent number: 7361791Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3-5.0, c:a=2.0-6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95-1.10.Type: GrantFiled: May 24, 2007Date of Patent: April 22, 2008Assignee: Saudi Basic Industries CorporationInventors: Wugeng Liang, Scott A. Stevenson, James W. Kauffman, John S. Ledford, Joseph R. Linzer
-
Patent number: 7273829Abstract: The invention is a supported or bound heteropoly acid catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition has an active heteropoly acid component containing molybdenum, vanadium, phosphorus and cesium and an inert heteropoly acid component containing molybdenum, phosphorus and cesium, potassium, rubidium or sodium at a relative molybdenum:cesium/potassium/rubidium/sodium molar ratio of above about 12:2. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, contacting the heteropoly acid compounds to form a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst.Type: GrantFiled: December 22, 2005Date of Patent: September 25, 2007Assignee: Saudi Basic Industries CorporationInventors: Wugeng Liang, Scott A. Stevenson, Joseph R. Linzer