Patents by Inventor Scott E. Fraser

Scott E. Fraser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190380574
    Abstract: This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to an OCT system that generates an image with improved quality. In one example, the OCT system may generate an improved Bscan image by using multiple shaping functions to shape the raw A-scans. In another example, the OCT system may generate the improved B-scan image by forming multiple apodization patterns on a detector and acquiring raw A-scans by using the apodization patterns. A better diagnosis of a health condition may be reached by using the improved images generated by the OCT system of this disclosure.
    Type: Application
    Filed: November 27, 2017
    Publication date: December 19, 2019
    Inventors: Yu CHEN, Scott E. FRASER
  • Publication number: 20190287222
    Abstract: This invention relates to a hyperspectral imaging system for denoising and/or color unmixing multiple overlapping spectra in a low signal-to-noise regime with a fast analysis time. This system may be configured to carry out Hyper-Spectral Phasors (HySP) calculations to effectively analyze hyper-spectral time-lapse data. For example, this system may be configured to carry out Hyper-Spectral Phasors (HySP) calculations to effectively analyze five-dimensional (5D) hyper-spectral time-lapse data. Advantages of this imaging system may include: (a) fast computational speed, (b) the ease of phasor analysis, and (c) a denoising algorithm to obtain the minimally-acceptable signal-to-noise ratio (SNR). An unmixed color image of a target may be generated. These images may be used in diagnosis of a health condition, which may enhance a patient's clinical outcome and evolution of the patient's health.
    Type: Application
    Filed: November 7, 2017
    Publication date: September 19, 2019
    Inventors: Francesco Cutrale, Scott E. Fraser
  • Publication number: 20190064493
    Abstract: Systems and techniques relating to optimizing volumetric imaging with selective volume illumination (SVI) using light field detection, in one aspect, include: a light source configured to emit an illumination light that propagates via an illumination light path to illuminate a three-dimensional (3D) sample; and an optical system arranged with respect to the light source to receive a light field, which comes from the illuminated 3D sample, wherein the light field propagates via a detection light path; wherein the light source, the optical system, or both, are configurable to select a volume of a 3D-confined illumination of the 3D sample based on the 3D sample to be illuminated and a light field detection (LFD) process to be applied.
    Type: Application
    Filed: February 24, 2017
    Publication date: February 28, 2019
    Inventors: Thai V. Truong, Sara Madaan, Daniel B. Holland, Scott E. Fraser
  • Publication number: 20180239168
    Abstract: A sclera or contact lens with an image of an eye that is fenestrated, or uniformly speckled with many sub-millimeter sized transparent regions or holes, is disclosed. The micro fenestrated contact lens can be worn on a strabismic, or misaligned, eye so that its image is aligned with the wearer's dominant eye. The fenestrations allow the wearer to see through the opaque or translucent image printed on the contact lens, thus allowing binocular vision even though his or her strabismic eye is covered.
    Type: Application
    Filed: February 16, 2018
    Publication date: August 23, 2018
    Inventors: Daniel M. Schwartz, Scott E. Fraser, Morteza Gharib, Sean A. Mendoza, Kevin A. Mendoza, Nicholas T. Rinella
  • Patent number: 9971136
    Abstract: The invention relates to a method and a system to achieve spatially (e.g. three-dimensionally) confined photomodulation at the focal volume (50) in a ample (55) mounted in a microscope system, comprising two or more laser light sources (41, 42) emitting light (32, 34) of different wavelengths adapted to excite a material in an identical number of independent excitation steps to a higher vibrational state from which the material relaxes, either emitting a conversion light to be detected (“photoexcitation”) or modulating the spectral properties of the material (“photomodulation”).
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: May 15, 2018
    Assignees: ETH ZÜRICH, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Periklis Pantazis, William P. Dempsey, Thai V. Truong, Scott E. Fraser, Lada Georgieva
  • Publication number: 20180127785
    Abstract: Described herein are methods and compositions for genomic editing. Endonucleases for genomic editing involve inducing breaks in double stranded DNA, for which knock-ins are notoriously inefficient for relying on random integration of homologous DNA sequences into the break site by repair proteins. To address these issues, described herein are novel recombinant fusion proteins that actively recruit linear DNA inserts in closer proximity to the genomic cleavage site, increasing integration efficiency of large DNA fragments into the genome. Such improvements to genomic editing technology allow one to use lower linear DNA concentrations without sacrificing efficiency and can be further combined with other features, such as fluorescent protein reporting systems.
    Type: Application
    Filed: May 13, 2016
    Publication date: May 10, 2018
    Applicant: University of Southern California
    Inventors: Jason Junge, Timothy Hunt, Scott E. Fraser
  • Patent number: 9913603
    Abstract: Methods and systems for nanopillar sensors are described. Nanopillars can be defined on a substrate, and metal deposited on the nanopillars. A thermal treatment can reflow the metal on the nanopillars forming metallic bulbs on the top end of the nanopillars. These structures can have enhanced optical detection when functionalized with biological agents, or can detect gases, particles and liquids through interaction with the metal layer on the nanopillars.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: March 13, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Sameer Walavalkar, Chieh-feng Chang, Axel Scherer, Brandon Marin, Scott E. Fraser, Andrea R. Tao
  • Patent number: 9897587
    Abstract: Second harmonic nanoprobes for imaging biological samples and a method of using such probes to monitor the dynamics of biological process using a field resonance enhanced second harmonic (FRESH) technique are provided. The second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystals that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy for in vivo imaging of biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: February 20, 2018
    Assignee: California Institute of Technology
    Inventors: Periklis Pantazis, Ye Pu, Demetri Psaltis, John H. Hong, Scott E. Fraser
  • Patent number: 9763570
    Abstract: This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to an OCT system having a configuration that uses a phase sensitive B-scan registration method. In this disclosure, an OCT system may have a configuration that scans a physical object, acquires OCT signals to form B-scans, uses these B-scans to determine an optimal shift in an axial direction by using total phase error between B-scans, and align B-scans, thereby minimizing effects of motion that may occur during scanning of the physical object.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: September 19, 2017
    Assignees: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFRONIA INSTITUTE OF TECHNOLOGY
    Inventors: Jeffrey P. Fingler, Scott E. Fraser
  • Patent number: 9763569
    Abstract: This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to an OCT system with improved motion contrast. This disclosure particularly relates to motion contrast methods for such OCT systems. The OCT system of this disclosure may have a configuration that scans a physical object, which has a surface and a depth, with a beam of light that has a beam width and a direction; acquires OCT signals from the scan; forms at least one A-scan using the acquired OCT signals; forms at least one B-scan cluster set using the acquired OCT signals that includes at least two B-scan clusters that each include at least two B-scans. The B-scans within each B-scan cluster set are parallel to one another and parallel to the direction of the beam of light. The OCT system may have a configuration that calculates OCT motion contrast using the at least one B-scan cluster set. This OCT system may form and display an image of the physical object.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: September 19, 2017
    Assignees: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jeffrey P. Fingler, Scott E. Fraser
  • Publication number: 20170082596
    Abstract: Second harmonic nanoprobes for imaging biological samples and a method of using such probes to monitor the dynamics of biological process using a field resonance enhanced second harmonic (FRESH) technique are provided. The second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystals that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy for in vivo imaging of biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Application
    Filed: October 24, 2016
    Publication date: March 23, 2017
    Applicant: California Institute of Technology
    Inventors: Periklis Pantazis, Ye Pu, Demetri Psaltis, John H. Hong, Scott E. Fraser
  • Publication number: 20170045684
    Abstract: Methods for fabricating flexible substrate nanostructured devices are disclosed. The nanostructures comprise nano-pillars and metallic bulbs or nano-apertures. The nanostructures can be functionalized to detect biological entities. The flexible substrates can be rolled into cylindrical tubes for detection of fluidic samples.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 16, 2017
    Inventors: Chieh-feng CHANG, Sameer WALAVALKAR, Scott E. FRASER, Axel SCHERER
  • Publication number: 20170020387
    Abstract: This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to an OCT system having a configuration that uses a phase sensitive B-scan registration method. In this disclosure, an OCT system may have a configuration that scans a physical object, acquires OCT signals to form B-scans, uses these B-scans to determine an optimal shift in an axial direction by using total phase error between B-scans, and align B-scans, thereby minimizing effects of motion that may occur during scanning of the physical object.
    Type: Application
    Filed: February 4, 2015
    Publication date: January 26, 2017
    Applicants: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jeffrey P. Fingler, Scott E. Fraser
  • Publication number: 20170000327
    Abstract: This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to an OCT system with improved motion contrast. This disclosure particularly relates to motion contrast methods for such OCT systems. The OCT system of this disclosure may have a configuration that scans a physical object, which has a surface and a depth, with a beam of light that has a beam width and a direction; acquires OCT signals from the scan; forms at least one A-scan using the acquired OCT signals; forms at least one B-scan cluster set using the acquired OCT signals that includes at least two B-scan clusters that each include at least two B-scans. The B-scans within each B-scan cluster set are parallel to one another and parallel to the direction of the beam of light. The OCT system may have a configuration that calculates OCT motion contrast using the at least one B-scan cluster set. This OCT system may form and display an image of the physical object.
    Type: Application
    Filed: February 4, 2015
    Publication date: January 5, 2017
    Applicants: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jeffrey P. Fingler, Scott E. Fraser
  • Patent number: 9512000
    Abstract: Methods for fabricating flexible substrate nanostructured devices are disclosed. The nanostructures comprise nano-pillars and metallic bulbs or nano-apertures. The nanostructures can be functionalized to detect biological entities. The flexible substrates can be rolled into cylindrical tubes for detection of fluidic samples.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 6, 2016
    Assignee: California Institute of Technology
    Inventors: Chieh-feng Chang, Sameer Walavalkar, Scott E. Fraser, Axel Scherer
  • Publication number: 20160331227
    Abstract: This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to methods and systems for providing larger field of view OCT images. This disclosure also particularly relates to methods and systems for OCT angiography. These systems may allow OCT scanning for an extended duration and generation of large field OCT images suitable for the OCT angiography.
    Type: Application
    Filed: March 4, 2015
    Publication date: November 17, 2016
    Applicants: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jeffrey P. Fingler, Scott E. Fraser
  • Publication number: 20160317026
    Abstract: This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to methods and systems for providing larger field of view OCT images. This disclosure also particularly relates to methods and systems for OCT angiography. This disclosure further relates to systems for health characterization of an eye by OCT angiography. This OCT angiography system may determine a feature of a vasculature within an eye tissue and thereby identify a vascular anomaly and a spatial location of the vascular anomaly within the eye tissue.
    Type: Application
    Filed: March 4, 2015
    Publication date: November 3, 2016
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Jeffrey P. Fingler, Scott E. Fraser
  • Patent number: 9476830
    Abstract: Second harmonic nanoprobes for imaging biological samples and a method of using such probes to monitor the dynamics of biological process using a field resonance enhanced second harmonic (FRESH) technique are provided. The second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystals that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy for in vivo imaging of biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: October 25, 2016
    Assignee: California Institute of Technology
    Inventors: Periklis Pantazis, Ye Pu, Demetri Psaltis, John H. Hong, Scott E. Fraser
  • Publication number: 20160158724
    Abstract: Methods for fabricating flexible substrate nanostructured devices are disclosed. The nanostructures comprise nano-pillars and metallic bulbs or nano-apertures. The nanostructures can be functionalized to detect biological entities. The flexible substrates can be rolled into cylindrical tubes for detection of fluidic samples.
    Type: Application
    Filed: November 25, 2015
    Publication date: June 9, 2016
    Inventors: Chieh-feng CHANG, Sameer WALAVALKAR, Scott E. FRASER, Axel SCHERER
  • Patent number: 9352055
    Abstract: Functionalized second harmonic nanoprobes for imaging samples and a method of using such probes to monitor the dynamics different processes using a variety of imaging techniques are provided. The functionalized second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystalline materials that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy, and are provided with functional surface modifications that allow for targeted imaging of a variety of biological and non-biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: May 31, 2016
    Assignee: California Institute of Technology
    Inventors: Periklis Pantazis, Jelena Culic-Viskota, William P. Dempsey, Scott E. Fraser