Patents by Inventor Scott E. Fraser

Scott E. Fraser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010046679
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Application
    Filed: April 30, 2001
    Publication date: November 29, 2001
    Applicant: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Publication number: 20010034033
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Application
    Filed: May 23, 2001
    Publication date: October 25, 2001
    Applicant: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6277576
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: August 21, 2001
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6268150
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: July 31, 2001
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6268149
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: July 31, 2001
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6258545
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: July 10, 2001
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6238870
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: May 29, 2001
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6232295
    Abstract: A delivery vehicle is described that is capable of being specifically bound to and taken into targeted cells, delivering numerous paramagnetic ions for magnetic resonance imaging (MRI) of the cells. The delivery vehicle comprises a polymeric molecule having a net positive charge complexed with another polymeric molecule having a net negative charge. Cell targeting moieties and MRI contrast agents are attached to one or both of the polymeric molecules. In one embodiment, the polymeric molecule having a net negative charge is a nucleic acid. Thus, the delivery vehicles can be used in clinical protocols in which nucleic acids for gene therapy and agents for MRI contrast are co-transported to specific cells allowing medical imaging monitoring of nucleic acid delivery.
    Type: Grant
    Filed: October 12, 1994
    Date of Patent: May 15, 2001
    Inventors: Jon Faiz Kayyem, Thomas J. Meade, Scott E. Fraser
  • Patent number: 6200761
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: March 13, 2001
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6180352
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: January 30, 2001
    Assignee: California Insitute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6177250
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: January 23, 2001
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6123921
    Abstract: The invention provides bifunctional detection agents comprising optical dyes covalently linked to at least one magnetic resonance image (MRI) contrast agent. These agents may include a linker, which may be either a coupling moiety or a polymer.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: September 26, 2000
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Scott E. Fraser, Russell E. Jacobs
  • Patent number: 6087100
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: July 11, 2000
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 6071699
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: June 6, 2000
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 5952172
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: September 14, 1999
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 5900228
    Abstract: The invention provides bifunctional detection agents comprising optical dyes covalently linked to at least one magnetic resonance image (MRI) contrast agent. These agents may include a linker, which may be either a coupling moiety or a polymer.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: May 4, 1999
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Scott E. Fraser, Russell E. Jacobs
  • Patent number: 5824473
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 20, 1998
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 5780234
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: July 14, 1998
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 5770369
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: June 23, 1998
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser
  • Patent number: 5705348
    Abstract: The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: January 6, 1998
    Assignee: California Institute of Technology
    Inventors: Thomas J. Meade, Jon Faiz Kayyem, Scott E. Fraser