Patents by Inventor Scott G. Walton

Scott G. Walton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210082687
    Abstract: Methods and apparatuses for the production of HF in an electron-beam generated plasma. A gas containing fluorine, hydrogen, and an inert gas such as argon, e.g., Ar/SF6/H2O or Ar/SF6/NH3 flows into a plasma treatment chamber to produce a low pressure gas in the chamber. An electron beam directed into the gas forms a plasma from the gas, with energy from the electron beam dissociating the F-containing molecules, which react with H-containing gas to produce HF in the plasma. Although the concentration of the gas phase HF in the plasma is a very small fraction of the total gas in the chamber, due to its highly reactive nature, the low concentration of HF produced by the method of the present invention is enough to modify the surfaces of materials, performing the same function as aqueous HF solutions to remove oxygen from an exposed material.
    Type: Application
    Filed: October 26, 2020
    Publication date: March 18, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, Scott G. Walton
  • Patent number: 10928351
    Abstract: An electrochemical cell includes a working electrode in contact with an aqueous electrolyte solution, a counter electrode in contact with the aqueous electrolyte solution, and a reference electrode in contact with the aqueous electrolyte solution. The working electrode comprises a plasma modified epitaxial synthesized graphene surface fabricated on SiC.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 23, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Scott A. Trammell, Rachael L. Myers-Ward, Sandra C. Hangarter, Daniel Zabetakis, David A. Stenger, David Kurt Gaskill, Scott G. Walton
  • Patent number: 10854441
    Abstract: Methods and apparatuses for the production of HF in an electron-beam generated plasma. A gas containing fluorine, hydrogen, and an inert gas such as argon, e.g., Ar/SF6/H2O or Ar/SF6/NH3 flows into a plasma treatment chamber to produce a low pressure gas in the chamber. An electron beam directed into the gas forms a plasma from the gas, with energy from the electron beam dissociating the F-containing molecules, which react with H-containing gas to produce HF in the plasma. Although the concentration of the gas phase HF in the plasma is a very small fraction of the total gas in the chamber, due to its highly reactive nature, the low concentration of HF produced by the method of the present invention is enough to modify the surfaces of materials, performing the same function as aqueous HF solutions to remove oxygen from an exposed material.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: December 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, Scott G. Walton
  • Publication number: 20190378691
    Abstract: Methods and apparatuses for the production of HF in an electron-beam generated plasma. A gas containing fluorine, hydrogen, and an inert gas such as argon, e.g., Ar/SF6/H2O or Ar/SF6/NH3 flows into a plasma treatment chamber to produce a low pressure gas in the chamber. An electron beam directed into the gas forms a plasma from the gas, with energy from the electron beam dissociating the F-containing molecules, which react with H-containing gas to produce HF in the plasma. Although the concentration of the gas phase HF in the plasma is a very small fraction of the total gas in the chamber, due to its highly reactive nature, the low concentration of HF produced by the method of the present invention is enough to modify the surfaces of materials, performing the same function as aqueous HF solutions to remove oxygen from an exposed material.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 12, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, Scott G. Walton
  • Patent number: 10392248
    Abstract: A method for dry graphene transfer comprising growing graphene on a growth substrate, chemically modifying a transfer substrate to enhance its adhesion to graphene, contacting the graphene on the growth substrate with the transfer substrate and transfer printing; and separating the transfer substrate with attached graphene from the growth substrate. The growth substrate may be copper foil. The transfer substrate may be a polymer, such as polystyrene or polyethylene, or an inorganic substrate.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 27, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Evgeniya H. Lock, Mira Baraket, Scott G. Walton, Matthew Laskoski, Paul E. Sheehan, Shawn P. Mulvaney, Daniel R. Hines
  • Patent number: 10220364
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: March 5, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Publication number: 20190033247
    Abstract: An electrochemical cell includes a working electrode in contact with an aqueous electrolyte solution, a counter electrode in contact with the aqueous electrolyte solution, and a reference electrode in contact with the aqueous electrolyte solution. The working electrode comprises a plasma modified epitaxial synthesized graphene surface fabricated on SiC.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 31, 2019
    Inventors: Scott A. Trammell, Rachael L. Myers-Ward, Sandra C. Hangarter, Daniel Zabetakis, David A. Stenger, David Kurt Gaskill, Scott G. Walton
  • Publication number: 20180305202
    Abstract: A method for dry graphene transfer comprising growing graphene on a growth substrate, chemically modifying a transfer substrate to enhance its adhesion to graphene, contacting the graphene on the growth substrate with the transfer substrate and transfer printing; and separating the transfer substrate with attached graphene from the growth substrate. The growth substrate may be copper foil. The transfer substrate may be a polymer, such as polystyrene or polyethylene, or an inorganic substrate.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 25, 2018
    Inventors: Evgeniya H. Lock, Mira Baraket, Scott G. Walton, Matthew Laskoski, Paul E. Sheehan, Shawn P. Mulvaney, Daniel R. Hines
  • Publication number: 20180229205
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 9984860
    Abstract: An apparatus and methods to increase and direct the spatial volume of atmospheric pressure plasma jets. One or more additional gas flows is introduced to intersect the plasma jet. As the plasma jet interacts with these additional gas flows, the direction of propagation of the plasma jet is altered, the plasma expands into the volume defined by the additional gas flow, and the volume and effective surface area of the plasma jet increases accordingly, while the power increase needed to drive the increase in plasma volume scales sub-linearly with the increase in volume.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 29, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, David R. Boris, Tzvetelina Petrova, Eric D. Gillman
  • Publication number: 20180130641
    Abstract: An apparatus and methods to increase and direct the spatial volume of atmospheric pressure plasma jets. One or more additional gas flows is introduced to intersect the plasma jet. As the plasma jet interacts with these additional gas flows, the direction of propagation of the plasma jet is altered, the plasma expands into the volume defined by the additional gas flow, and the volume and effective surface area of the plasma jet increases accordingly, while the power increase needed to drive the increase in plasma volume scales sub-linearly with the increase in volume.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 10, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, David R. Boris, Tzvetelina Petrova, Eric D. Gillman
  • Patent number: 9962676
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: May 8, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Publication number: 20160228840
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: March 31, 2015
    Publication date: August 11, 2016
    Applicant: The Governmnet of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 9182392
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: November 10, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Publication number: 20140154791
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 8651158
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: February 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Patent number: 8288950
    Abstract: An apparatus and method for controlling electron flow within a plasma to produce a controlled electron beam is provided. A plasma is formed between a cathode and an acceleration anode. A control anode is connected to the plasma and to the acceleration anode via a switch. If the switch is open, the ions from the plasma flow to the cathode and plasma electrons flow to the acceleration anode. With the acceleration anode suitably transparent and negatively biased with a DC high voltage source, the electrons flowing from the plasma are accelerated to form an electron beam. If the switch is closed, the ions still flow to the cathode but the electrons flow to the control anode rather than the acceleration anode. Consequently, the electron beam is turned off, but the plasma is unaffected. By controlling the opening and closing of the switch, a controlled pulsed electron beam can be generated.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: October 16, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, Christopher D. Cothran, Richard F. Fernsler, Robert A. Meger, William E. Amatucci
  • Publication number: 20120244358
    Abstract: A method for dry graphene transfer comprising growing graphene on a growth substrate, chemically modifying a transfer substrate to enhance its adhesion to graphene, contacting the graphene on the growth substrate with the transfer substrate and transfer printing; and separating the transfer substrate with attached graphene from the growth substrate. The growth substrate may be copper foil. The transfer substrate may be a polymer, such as polystyrene or polyethylene, or an inorganic substrate. Also disclosed is the related composite material made by this process.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Inventors: Evgeniya H. Lock, Scott G. Walton, Mira Baraket, Matthew Laskoski, Paul E. Sheehan, Shawn P. Mulvaney, Daniel R. Hines
  • Patent number: 8190366
    Abstract: An apparatus and method for determining plasma parameters such as plasma electron density ne. The probe apparatus includes an LC resonance probe comprising an inductive element and a capacitive element connected in series. The capacitive element of the probe can be in the form of a parallel plate capacitor, a cylindrical capacitor, a spherical capacitor, or any other suitable capacitor. The configuration of the probe apparatus gives it a characteristic resonance frequency ?R0 which can be determined by a circuit analysis device. When the capacitive element of the probe apparatus is placed in a plasma, the probe exhibits a new resonance frequency ?R, which is different from ?R0 because of the dielectric constant ? of the plasma. The difference in resonance frequencies can be used to determine plasma density ne, where n e = m e ? ? 0 e 2 ? ( ? R 2 - ? R ? ? 0 2 ) .
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 29, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, David D. Blackwell, David N. Walker, Richard F. Fernsler, Scott G. Walton
  • Publication number: 20120084046
    Abstract: An apparatus and method for determining plasma parameters such as plasma electron density ne. The probe apparatus includes an LC resonance probe comprising an inductive element and a capacitive element connected in series. The capacitive element of the probe can be in the form of a parallel plate capacitor, a cylindrical capacitor, a spherical capacitor, or any other suitable capacitor. The configuration of the probe apparatus gives it a characteristic resonance frequency ?R0 which can be determined by a circuit analysis device. When the capacitive element of the probe apparatus is placed in a plasma, the probe exhibits a new resonance frequency ?R, which is different from ?R0 because of the dielectric constant ? of the plasma. The difference in resonance frequencies can be used to determine plasma density ne, when n e = m e ? ? 0 e 2 ? ( ? R 2 - ? R ? ? 0 2 ) .
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, David D. Blackwell, David N. Walker, Richard F. Fernsler, Scott G. Walton