Patents by Inventor Scott G. Walton

Scott G. Walton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8288950
    Abstract: An apparatus and method for controlling electron flow within a plasma to produce a controlled electron beam is provided. A plasma is formed between a cathode and an acceleration anode. A control anode is connected to the plasma and to the acceleration anode via a switch. If the switch is open, the ions from the plasma flow to the cathode and plasma electrons flow to the acceleration anode. With the acceleration anode suitably transparent and negatively biased with a DC high voltage source, the electrons flowing from the plasma are accelerated to form an electron beam. If the switch is closed, the ions still flow to the cathode but the electrons flow to the control anode rather than the acceleration anode. Consequently, the electron beam is turned off, but the plasma is unaffected. By controlling the opening and closing of the switch, a controlled pulsed electron beam can be generated.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: October 16, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, Christopher D. Cothran, Richard F. Fernsler, Robert A. Meger, William E. Amatucci
  • Publication number: 20120244358
    Abstract: A method for dry graphene transfer comprising growing graphene on a growth substrate, chemically modifying a transfer substrate to enhance its adhesion to graphene, contacting the graphene on the growth substrate with the transfer substrate and transfer printing; and separating the transfer substrate with attached graphene from the growth substrate. The growth substrate may be copper foil. The transfer substrate may be a polymer, such as polystyrene or polyethylene, or an inorganic substrate. Also disclosed is the related composite material made by this process.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Inventors: Evgeniya H. Lock, Scott G. Walton, Mira Baraket, Matthew Laskoski, Paul E. Sheehan, Shawn P. Mulvaney, Daniel R. Hines
  • Patent number: 8190366
    Abstract: An apparatus and method for determining plasma parameters such as plasma electron density ne. The probe apparatus includes an LC resonance probe comprising an inductive element and a capacitive element connected in series. The capacitive element of the probe can be in the form of a parallel plate capacitor, a cylindrical capacitor, a spherical capacitor, or any other suitable capacitor. The configuration of the probe apparatus gives it a characteristic resonance frequency ?R0 which can be determined by a circuit analysis device. When the capacitive element of the probe apparatus is placed in a plasma, the probe exhibits a new resonance frequency ?R, which is different from ?R0 because of the dielectric constant ? of the plasma. The difference in resonance frequencies can be used to determine plasma density ne, where n e = m e ? ? 0 e 2 ? ( ? R 2 - ? R ? ? 0 2 ) .
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 29, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, David D. Blackwell, David N. Walker, Richard F. Fernsler, Scott G. Walton
  • Publication number: 20120084046
    Abstract: An apparatus and method for determining plasma parameters such as plasma electron density ne. The probe apparatus includes an LC resonance probe comprising an inductive element and a capacitive element connected in series. The capacitive element of the probe can be in the form of a parallel plate capacitor, a cylindrical capacitor, a spherical capacitor, or any other suitable capacitor. The configuration of the probe apparatus gives it a characteristic resonance frequency ?R0 which can be determined by a circuit analysis device. When the capacitive element of the probe apparatus is placed in a plasma, the probe exhibits a new resonance frequency ?R, which is different from ?R0 because of the dielectric constant ? of the plasma. The difference in resonance frequencies can be used to determine plasma density ne, when n e = m e ? ? 0 e 2 ? ( ? R 2 - ? R ? ? 0 2 ) .
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, David D. Blackwell, David N. Walker, Richard F. Fernsler, Scott G. Walton
  • Publication number: 20110308461
    Abstract: An electron beam enhanced nitriding system that passes a high-energy electron beam through nitrogen gas to form a low electron temperature plasma capable of delivering nitrogen ions and radicals to a substrate to be nitrided. The substrate can be mounted on an electrode, and the substrate can be biased and heated.
    Type: Application
    Filed: August 17, 2010
    Publication date: December 22, 2011
    Inventors: Scott G. Walton, Darrin Leonhardt, Robert A. Meger, Richard Fernsler, Christopher Muratore
  • Publication number: 20110116992
    Abstract: Disclosed herein is a method of: treating an organic polymer with an electron beam-generated plasma; exposing the treated polymer to air or an oxygen- and hydrogen-containing gas, generating hydroxyl groups on the surface of the polymer; reacting the surface with an organosilane compound having a chloro, fluoro, or alkoxy group and a functional or reactive group that is less reactive with the surface than the chloro, fluoro, or alkoxy group; and covalently immobilizing a biomolecule to the functional or reactive group or a reaction product thereof.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Stella H. North, Evgeniya H. Lock, Scott G. Walton, Chris Rowe Taitt
  • Publication number: 20110080093
    Abstract: An apparatus and method for controlling electron flow within a plasma to produce a controlled electron beam is provided. A plasma is formed between a cathode and an acceleration anode. A control anode is connected to the plasma and to the acceleration anode via a switch. If the switch is open, the ions from the plasma flow to the cathode and plasma electrons flow to the acceleration anode. With the acceleration anode suitably transparent and negatively biased with a DC high voltage source, the electrons flowing from the plasma are accelerated to form an electron beam. If the switch is closed, the ions still flow to the cathode but the electrons flow to the control anode rather than the acceleration anode. Consequently, the electron beam is turned off, but the plasma is unaffected. By controlling the opening and closing of the switch, a controlled pulsed electron beam can be generated.
    Type: Application
    Filed: October 6, 2010
    Publication date: April 7, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, Christopher D. Cothran, Richard F. Fernsler, Robert A. Meger, William E. Amatucci
  • Publication number: 20090314633
    Abstract: This invention provides a means to deposit thin films and coatings on a substrate using an electron beam generated plasma. The plasma can be used as an ion source in sputter applications, where the ions are used to liberate material from a target surface which can then condense on a substrate to form the film or coating. Alternatively, the plasma may be combined with existing deposition sources including those based on sputter or evaporation techniques. In either configuration, the plasma serves as a source of ion and radical species at the growing film surface in reactive deposition processes. The electron beam large area deposition system (EBELADS) is a new approach to the production of thin films or coatings up to and including several square meters.
    Type: Application
    Filed: August 27, 2009
    Publication date: December 24, 2009
    Applicant: The Gov. of the USA, as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, Darrin Leonhardt, Robert A. Meger, Richard Fernsler, Christopher Muratore
  • Patent number: 7510666
    Abstract: An ion-ion plasma source, that features a processing chamber containing a large concentration of halogen or halogen-based gases. A second chamber is coupled to the processing chamber and features an electron source which produces a high energy electron beam. The high energy electron beam is injected into the processing chamber where it is shaped and confined by a means for shaping and confining the high energy electron beam. The high energy electron beam produced in the second chamber when injected into the processing chamber ionizes the halogen gas creating a dense, ion-ion plasma in the processing chamber that is continuous in time.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, Robert Meger, Richard Fernsler, Darrin Leenhardt
  • Publication number: 20090032143
    Abstract: An electron beam enhanced nitriding system that passes a high-energy electron beam through nitrogen gas to form a low electron temperature plasma capable of delivering nitrogen ions and radicals to a substrate to be nitrided. The substrate can be mounted on an electrode, and the substrate can be biased and heated.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 5, 2009
    Inventors: Scott G Walton, Darrin Leonhardt, Robert A. Meger, Richard F. Fernsler, Christopher Muratore
  • Publication number: 20080087539
    Abstract: A method and system for material processing employing extracting equivalent fluxes of positive and negative ions at two surfaces from an ion-ion plasma without substantially altering the plasma potential. The extraction is achieved by applying a continuously applied bias to the substrate being processed, in order to attract the ions to the substrate surface to facilitate materials processing such as etching, deposition and chemical modification at the surface. The continuously applied bias is applied via a power source coupled to the plate, also referred to as a stage or chuck, holding the substrate.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 17, 2008
    Inventors: Scott G. Walton, Darrin Leonhardt, Richard F. Fernsler
  • Patent number: H2209
    Abstract: A large area metallization pretreatment and surface activation system that uses an electron beam-produced plasma capable of delivering substantial ion and radical fluxes at low temperatures over large areas of an organic plastic or polymer material. The ion and radical fluxes physically and chemically alter the surface structure of the organic plastic or polymer material thereby improving the ability of a film to adhere to the material.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: February 5, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Darrin Leonhardt, Scott G. Walton, Robert A. Meger, Christopher Muratore
  • Patent number: H2212
    Abstract: An ion-ion plasma source, that features a processing chamber containing a large concentration of halogen or halogen-based gases. A second chamber is coupled to the processing chamber and features an electron source which produces a high energy electron beam. The high energy electron beam is injected into the processing chamber where it is shaped and confined by a means for shaping and confining the high energy electron beam. The high energy electron beam produced in the second chamber when injected into the processing chamber ionizes the halogen gas creating a dense, ion-ion plasma in the processing chamber that is continuous in time. A method for creating an ion-ion plasma continuous in time.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: April 1, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Scott G. Walton, Robert Meger, Richard Fernsler, Darrin Leonhardt