Patents by Inventor Scott Hendrickson

Scott Hendrickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9845717
    Abstract: A method for an exhaust system is provided, comprising adjusting reductant injection responsive to a reductant concentration, the reductant concentration based on concentration sensor readings and vehicle motion. If the reductant freezes, the reductant may stratify, leading to inaccurate concentration sensor readings. Vehicle motion may mix the reductant, thereby ensuring an accurate concentration measurement which may then be used to adjust reductant injection.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: December 19, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Nicholas Girardi, Scott Donald Cooper, Cory Scott Hendrickson, Michiel J. Van Nieuwstadt
  • Patent number: 9732646
    Abstract: Methods and systems are provided for opportunistic regeneration of a diesel particulate filter based on cloud based traffic information and navigation information. In one example, a method may include determining initiation of regeneration, termination of regeneration and a degree of regeneration based on information from a lead vehicular network and navigation information in order to reduce a regeneration fuel penalty.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: August 15, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Devesh Upadhyay, Michael Hopka, Thomas Alan Brewbaker, Cory Scott Hendrickson
  • Patent number: 9708959
    Abstract: Methods are provided for determining an exhaust fluid level in an exhaust fluid storage tank based on a signal, and a quality of the signal from an exhaust fluid level sensor located in the exhaust fluid tank of a vehicle.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: July 18, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Cory Scott Hendrickson, Michiel J. Van Nieuwstadt
  • Publication number: 20160369676
    Abstract: Methods and systems are provided for modeling a reductant temperature and storage distribution of a SCR catalyst axially and radially. In one example, a method may include modeling an expected distribution of stored reductant among a plurality of axial zones and a plurality of radial zones of an SCR catalyst arranged in an engine exhaust passage and comparing the expected distribution with a reductant storage setpoint of each zone to adjust radial and axial storage locations.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 22, 2016
    Inventors: Cory Scott Hendrickson, Devesh Upadhyay
  • Publication number: 20160359993
    Abstract: A system and method for trend detection in a messaging platform. A trend detection model is selected and a time series having a plurality of instances of social data is received, wherein the instances of social data share a countable parameter. A count is made of occurrences of countable parameters in each instance of social data assigned to that bin and a trend detected based at least in part on the trend detection model and on the count for each bin.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 8, 2016
    Inventors: Scott Hendrickson, Jeffrey Aaron Kolb, Joshua Montague, Brian Lehman
  • Patent number: 9506145
    Abstract: A cleaning method for a UV chamber involves providing a first cleaning gas, a second cleaning gas, and a purge gas to one or more openings in the chamber. The first cleaning gas may be an oxygen containing gas, such as ozone, to remove carbon residues. The second cleaning gas may be a remote plasma of NF3 and O2 to remove silicon residues. The UV chamber may have two UV transparent showerheads, which together with a UV window in the chamber lid, define a gas volume proximate the UV window and a distribution volume below the gas volume. A purge gas may be flowed through the gas volume while one or more of the cleaning gases is flowed into the distribution volume to prevent the cleaning gases from impinging on the UV transparent window.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: November 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sanjeev Baluja, Alexandros T. Demos, Kelvin Chan, Juan Carlos Rocha-Alvarez, Scott A. Hendrickson, Abhijit Kangude, Inna Turevsky, Mahendra Chhabra, Thomas Nowak, Daping Yao, Bo Xie, Daemian Raj
  • Patent number: 9506390
    Abstract: Methods and systems are provided for modeling a reductant temperature and storage distribution of a SCR catalyst axially and radially. In one example, a method may include modeling an expected distribution of stored reductant among a plurality of axial zones and a plurality of radial zones of an SCR catalyst arranged in an engine exhaust passage and comparing the expected distribution with a reductant storage setpoint of each zone to adjust radial and axial storage locations.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: November 29, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Cory Scott Hendrickson, Devesh Upadhyay
  • Publication number: 20160296981
    Abstract: A cleaning method for a UV chamber involves providing a first cleaning gas, a second cleaning gas, and a purge gas to one or more openings in the chamber. The first cleaning gas may be an oxygen containing gas, such as ozone, to remove carbon residues. The second cleaning gas may be a remote plasma of NF3 and O2 to remove silicon residues. The UV chamber may have two UV transparent showerheads, which together with a UV window in the chamber lid, define a gas volume proximate the UV window and a distribution volume below the gas volume. A purge gas may be flowed through the gas volume while one or more of the cleaning gases is flowed into the distribution volume to prevent the cleaning gases from impinging on the UV transparent window.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 13, 2016
    Inventors: Sanjeev BALUJA, Alexandros T. DEMOS, Kelvin CHAN, Juan Carlos ROCHA-ALVAREZ, Scott A. HENDRICKSON, Abhijit KANGUDE, Inna TUREVSKY, Mahendra CHHABRA, Thomas NOWAK, Daping YAO, Bo XIE, Daemian RAJ
  • Publication number: 20160289838
    Abstract: Embodiments of the present invention provide apparatus and methods for performing UV treatment and chemical treatment and/or deposition in the same chamber. One embodiment of the present invention provides a processing chamber including a UV transparent gas distribution showerhead disposed above a substrate support located in an inner volume of the processing chamber, a UV transparent window disposed above the UV transparent gas distribution showerhead, and a UV unit disposed outside the inner volume. The UV unit is configured to direct UV lights towards the substrate support through the UV transparent window and the UV transparent gas distribution showerhead.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 6, 2016
    Inventors: Amit BANSAL, Dale R. DU BOIS, Juan Carlos ROCHA-ALVAREZ, Sanjeev BALUJA, Scott A. HENDRICKSON, Thomas NOWAK
  • Publication number: 20160201533
    Abstract: Methods and systems are provided for opportunistic regeneration of a diesel particulate filter based on cloud based traffic information and navigation information. In one example, a method may include determining initiation of regeneration, termination of regeneration and a degree of regeneration based on information from a lead vehicular network and navigation information in order to reduce a regeneration fuel penalty.
    Type: Application
    Filed: January 12, 2015
    Publication date: July 14, 2016
    Inventors: Devesh Upadhyay, Michael Hopka, Thomas Alan Brewbaker, Cory Scott Hendrickson
  • Patent number: 9364871
    Abstract: A cleaning method for a UV chamber involves providing a first cleaning gas, a second cleaning gas, and a purge gas to one or more openings in the chamber. The first cleaning gas may be an oxygen containing gas, such as ozone, to remove carbon residues. The second cleaning gas may be a remote plasma of NF3 and O2 to remove silicon residues. The UV chamber may have two UV transparent showerheads, which together with a UV window in the chamber lid, define a gas volume proximate the UV window and a distribution volume below the gas volume. A purge gas may be flowed through the gas volume while one or more of the cleaning gases is flowed into the distribution volume to prevent the cleaning gases from impinging on the UV transparent window.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: June 14, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sanjeev Baluja, Alexandros T. Demos, Kelvin Chan, Juan Carlos Rocha-Alvarez, Scott A. Hendrickson, Abhijit Kangude, Inna Turevsky, Mahendra Chhabra, Thomas Nowak, Daping Yao, Bo Xie, Daemian Raj
  • Publication number: 20160115838
    Abstract: A method for an exhaust system is provided, comprising adjusting reductant injection responsive to a reductant concentration, the reductant concentration based on concentration sensor readings and vehicle motion. If the reductant freezes, the reductant may stratify, leading to inaccurate concentration sensor readings. Vehicle motion may mix the reductant, thereby ensuring an accurate concentration measurement which may then be used to adjust reductant injection.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: Nicholas Girardi, Scott Donald Cooper, Cory Scott Hendrickson, Michiel J. Van Nieuwstadt
  • Publication number: 20150019108
    Abstract: Methods are provided for determining an exhaust fluid level in an exhaust fluid storage tank based on a signal, and a quality of the signal from an exhaust fluid level sensor located in the exhaust fluid tank of a vehicle.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventors: Cory Scott Hendrickson, Michiel J. Van Nieuwstadt
  • Patent number: 8841629
    Abstract: Devices and methods are provided for monitoring low-level microwave excursions from a UV curing system to determine if equipment is damaged, such as screen tears or improper assembly of UV lampheads. A radio frequency (RF) detector may be used to detect microwaves in a range of about 0.2-5 mW/cm2, wherein the RF detector comprises an antenna with a hoop shaped portion, a circuit board having a diode detector and an amplifier circuit, a housing, and a bracket coupled to the housing that is suitable for coupling the RF detector to the UV curing system. An alarm threshold may also be set, which can be correlated to microwave levels at or below levels that could cause damage to semiconductor devices being processed. A substrate processing system comprising an RF detector is also provided.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 23, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Scott A. Hendrickson, Liliya Krivulina, Juan Carlos Rocha, Sanjeev Baluja
  • Publication number: 20140264059
    Abstract: Embodiments of a semiconductor processing chamber described herein include a substrate support, a source of radiant energy opposite the substrate support, a window between the source of radiant energy and the substrate support, a detector sensitive to the radiant energy positioned to detect the radiant energy transmitted by the window, and a detector sensitive to radiation emitted by the substrate positioned to detect radiation emitted by the substrate. The chamber may also include a showerhead. The substrate support may be between the detectors and the window. A second radiant energy source may be included to project energy through the window to a detector. The second radiant energy source may also be located proximate the first radiant energy source and the detectors.
    Type: Application
    Filed: February 6, 2014
    Publication date: September 18, 2014
    Inventors: Sanjeev BALUJA, Tuan Anh NGUYEN, Abhijit KANGUDE, Bozhi YANG, Amit Kumar BANSAL, Inna TUREVSKY, Scott A. HENDRICKSON, Juan Carlos ROCHA- ALVAREZ, Thomas NOWAK
  • Patent number: 8753449
    Abstract: Embodiments of the invention provide methods for curing an ultra low-k dielectric film within a UV processing chamber. In one embodiment, the method includes depositing an ultra low-k dielectric layer on a substrate in a deposition chamber, and subjecting the deposited ultra low-k dielectric layer to a UV curing processes in a UV processing chamber. The method includes stabilizing the UV processing chamber by flowing an oxygen gas and a purge gas into the UV processing chamber at a flow ratio of about 1:50000 to about 1:100. While flowing the oxygen-doped purge gas, the substrate is exposed to UV radiation to cure the deposited ultra low-k dielectric layer. The inventive oxygen-doped purge curing process provides an alternate pathway to build silicon-oxygen network of the ultra low-k dielectric material, thereby accelerating cross-linking efficiency without significantly affecting the film properties of the deposited ultra low-k dielectric material.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: June 17, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Mahendra Chhabra, Scott A. Hendrickson, Sanjeev Baluja, Tsutomu Kiyohara, Juan Carlos Rocha-Alvarez, Alexandros T. Demos
  • Publication number: 20140053866
    Abstract: A cleaning method for a UV chamber involves providing a first cleaning gas, a second cleaning gas, and a purge gas to one or more openings in the chamber. The first cleaning gas may be an oxygen containing gas, such as ozone, to remove carbon residues. The second cleaning gas may be a remote plasma of NF3 and O2 to remove silicon residues. The UV chamber may have two UV transparent showerheads, which together with a UV window in the chamber lid, define a gas volume proximate the UV window and a distribution volume below the gas volume. A purge gas may be flowed through the gas volume while one or more of the cleaning gases is flowed into the distribution volume to prevent the cleaning gases from impinging on the UV transparent window.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 27, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sanjeev BALUJA, Alexandros T. DEMOS, Kelvin CHAN, Juan Carlos ROCHA-ALVAREZ, Scott A. HENDRICKSON, Abhijit KANGUDE, Inna TUREVSKY, Mahendra CHHABRA, Thomas NOWAK, Daping YAO, Bo XIE, Daemian RAJ
  • Patent number: 8657961
    Abstract: Embodiments of the invention generally provide methods for cleaning a UV processing chamber. In one embodiment, the method includes flowing an oxygen-containing gas through a plurality of passages formed in a UV transparent gas distribution showerhead and into a processing region located between the UV transparent gas distribution showerhead and a substrate support disposed within the thermal processing chamber, exposing the oxygen-containing gas to UV radiation under a pressure scheme comprising a low pressure stage and a high pressure stage to generate reactive oxygen radicals, and removing unwanted residues or deposition build-up from exposed surfaces of chamber components presented in the thermal processing chamber using the reactive oxygen radicals.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: February 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Bo Xie, Alexandros T. Demos, Scott A. Hendrickson, Sanjeev Baluja, Juan Carlos Rocha-Alvarez
  • Publication number: 20140000515
    Abstract: Devices and methods are provided for monitoring low-level microwave excursions from a UV curing system to determine if equipment is damaged, such as screen tears or improper assembly of UV lampheads. A radio frequency (RF) detector may be used to detect microwaves in a range of about 0.2-5 mW/cm2, wherein the RF detector comprises an antenna with a hoop shaped portion, a circuit board having a diode detector and an amplifier circuit, a housing, and a bracket coupled to the housing that is suitable for coupling the RF detector to the UV curing system. An alarm threshold may also be set, which can be correlated to microwave levels at or below levels that could cause damage to semiconductor devices being processed. A substrate processing system comprising an RF detector is also provided.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: Applied Materials, Inc.
    Inventors: SCOTT A. HENDRICKSON, Liliya Krivulina, Juan Carlos Rocha, Sanjeev Baluja
  • Publication number: 20130344704
    Abstract: Embodiments of the invention provide methods for curing an ultra low-k dielectric film within a UV processing chamber. In one embodiment, the method includes depositing an ultra low-k dielectric layer on a substrate in a deposition chamber, and subjecting the deposited ultra low-k dielectric layer to a UV curing processes in a UV processing chamber. The method includes stabilizing the UV processing chamber by flowing an oxygen gas and a purge gas into the UV processing chamber at a flow ratio of about 1:50000 to about 1:100. While flowing the oxygen-doped purge gas, the substrate is exposed to UV radiation to cure the deposited ultra low-k dielectric layer. The inventive oxygen-doped purge curing process provides an alternate pathway to build silicon-oxygen network of the ultra low-k dielectric material, thereby accelerating cross-linking efficiency without significantly affecting the film properties of the deposited ultra low-k dielectric material.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 26, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Mahendra CHHABRA, Scott A. HENDRICKSON, Sanjeev BALUJA, Tsutomu KIYOHARA, Juan Carlos ROCHA-ALVAREZ, Alexandros T. DEMOS