Patents by Inventor Scott J. Deboer

Scott J. Deboer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7345333
    Abstract: A method used during the formation of a semiconductor device comprises providing a wafer substrate assembly comprising a plurality of digit line plug contact pads and capacitor storage cell contact pads which contact a semiconductor wafer. A dielectric layer is provided over the wafer substrate assembly and etched to expose the digit line plug contact pads, and a liner is provided in the opening. A portion of the digit line plug is formed, then the dielectric layer is etched again to expose the capacitor storage cell contact pads. A capacitor bottom plate is formed to contact the storage cell contact pads, then the dielectric layer is etched a third time using the liner and the bottom plate as an etch stop layer. A capacitor cell dielectric layer and capacitor top plate are formed which provide a double-sided container cell. An additional dielectric layer is formed, then the additional dielectric layer, cell top plate, and the cell dielectric are etched to expose the digit line plug portion.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: March 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Ronald A. Weimer, John T. Moore
  • Patent number: 7268072
    Abstract: An intermediate metal plug is used to raise the platform to which contact is to be made. In the illustrated process, a partial bit line plug is formed adjacent a stacked capacitor, and an interlevel dielectric formed over the capacitor. The bit line contact is completed by extending a via from the bit line, formed above the interlevel dielectric, down to the level of the intermediate plug, and the via is filled with metal. The height of the via to be filled is thus reduced by the height of the intermediate plug. In one embodiment, the intermediate plug is slightly shorter than an adjacent container-shaped capacitor. In another embodiment, the intermediate plug is about as high as an adjacent stud capacitor.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 11, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. Deboer, Vishnu K. Agarwal
  • Patent number: 7192889
    Abstract: A method of forming a high dielectric oxide film conventionally formed using a post formation oxygen anneal to reduce the leakage current of such film includes forming a high dielectric oxide film on a surface. The high dielectric oxide film has a dielectric constant greater than about 4 and includes a plurality of oxygen vacancies present during the formation of the film. The high dielectric oxide film is exposed during the formation thereof to an amount of atomic oxygen sufficient for reducing the number of oxygen vacancies and eliminating the post formation oxygen anneal of the high dielectric oxide film. Further, the amount of atomic oxygen used in the formation method may be controlled as a function of the amount of oxygen incorporated into the high dielectric oxide film during the formation thereof or be controlled as a function of the concentration of atomic oxygen in a process chamber in which the high dielectric oxide film is being formed.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: March 20, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Randhir P. S. Thakur
  • Patent number: 7176079
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: February 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Patent number: 7153746
    Abstract: A method of forming a capacitor includes forming first and second capacitor electrodes over a substrate. A capacitor dielectric region is formed intermediate the first and second capacitor electrodes, and includes forming a silicon nitride comprising layer over the first capacitor electrode. A silicon oxide comprising layer is formed over the silicon nitride comprising layer. The silicon oxide comprising layer is exposed to an activated nitrogen species generated from a nitrogen-containing plasma effective to introduce nitrogen into at least an outermost portion of the silicon oxide comprising layer. Silicon nitride is formed therefrom effective to increase a dielectric constant of the dielectric region from what it was prior to said exposing. Capacitors and methods of forming capacitor dielectric layers are also disclosed.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: December 26, 2006
    Assignee: Micron Technology Inc.
    Inventors: John T. Moore, Scott J. DeBoer
  • Patent number: 7092233
    Abstract: An improved capacitor that is less susceptible to the depletion effect and methods for providing the same. The capacitor comprises a first and second electrode and an insulating layer interposed therebetween. The first electrode includes a bulk layer comprising n-doped polysilicon. The first electrode also includes an interface layer extending from a first surface of the bulk layer to the insulating layer. The interface layer is heavily doped with phosphorus so that the depletion region of the first electrode is confined substantially within the interface layer. The method of forming the interface layer comprises depositing a layer of hexamethldisilazane (HMDS) material over the first surface of the bulk layer so that HMDS molecules of the HMDS material chemically bond to the first surface of the bulk layer. The method further comprises annealing the layer of HMDS material in a phosphine ambient so as to replace CH3 methyl groups with PH3 molecules.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: August 15, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Don C. Powell
  • Patent number: 7084448
    Abstract: A method used during the formation of a semiconductor device comprises providing a wafer substrate assembly comprising a plurality of digit line plug contact pads and capacitor storage cell contact pads which contact a semiconductor wafer. A dielectric layer is provided over the wafer substrate assembly and etched to expose the digit line plug contact pads, and a liner is provided in the opening. A portion of the digit line plug is formed, then the dielectric layer is etched again to expose the capacitor storage cell contact pads. A capacitor bottom plate is formed to contact the storage cell contact pads, then the dielectric layer is etched a third time using the liner and the bottom plate as an etch stop layer. A capacitor cell dielectric layer and capacitor top plate are formed which provide a double-sided container cell. An additional dielectric layer is formed, then the additional dielectric layer, cell top plate, and the cell dielectric are etched to expose the digit line plug portion.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: August 1, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Ronald A. Weimer, John T. Moore
  • Patent number: 7064052
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 20, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Patent number: 7022623
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Patent number: 6964909
    Abstract: An improved capacitor that is less susceptible to the depletion effect and methods for providing the same. The capacitor comprises a first and second electrode and an insulating layer interposed therebetween. The first electrode includes a bulk layer comprising n-doped polysilicon. The first electrode also includes an interface layer extending from a first surface of the bulk layer to the insulating layer. The interface layer is heavily doped with phosphorus so that the depletion region of the first electrode is confined substantially within the interface layer. The method of forming the interface layer comprises depositing a layer of hexamethldisilazane (HMDS) material over the first surface of the bulk layer so that HMDS molecules of the HMDS material chemically bond to the first surface of the bulk layer. The method further comprises annealing the layer of HMDS material in a phosphine ambient so as to replace CH3 methyl groups with PH3 molecules.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: November 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Don C. Powell
  • Patent number: 6949477
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Patent number: 6927179
    Abstract: A method of forming a high dielectric oxide film conventionally formed using a post formation oxygen anneal to reduce the leakage current of such film includes forming a high dielectric oxide film on a surface. The high dielectric oxide film has a dielectric constant greater than about 4 and includes a plurality of oxygen vacancies present during the formation of the film. The high dielectric oxide film is exposed during the formation thereof to an amount of atomic oxygen sufficient for reducing the number of oxygen vacancies and eliminating the post formation oxygen anneal of the high dielectric oxide film. Further, the amount of atomic oxygen used in the formation method may be controlled as a function of the amount of oxygen incorporated into the high dielectric oxide film during the formation thereof or be controlled as a function of the concentration of atomic oxygen in a process chamber in which the high dielectric oxide film is being formed.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: August 9, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Randhir P. S. Thakur
  • Patent number: 6914017
    Abstract: The present invention includes a residue-free overlay target, as well as a method of forming a residue-residue free overlay target. The residue-free overlay target of the present invention is defined by trenches or pads including a series of raised lines. The raised lines included in the overlay target of the present invention substantially eliminate any surface topography, such as depressions, at the top surface of overlying material layers, and, thereby, prevent accumulation of process residue which may obscure the overlay target and inhibit further processing. The method of the present invention may be accomplished and modified using process technology known in the semiconductor fabrication art and includes providing a semiconductor substrate, depositing a resist layer, patterning the resist, and executing a wet or dry etch to create at least one overlay target according to the present invention.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: July 5, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Pary Baluswamy, Scott J. DeBoer, Ceredig Roberts, Tim H. Bossart
  • Patent number: 6891215
    Abstract: A method of forming a capacitor includes forming first and second capacitor electrodes over a substrate. A capacitor dielectric region is formed intermediate the first and second capacitor electrodes, and includes forming a silicon nitride comprising layer over the first capacitor electrode. A silicon oxide comprising layer is formed over the silicon nitride comprising layer. The silicon oxide comprising layer is exposed to an activated nitrogen species generated from a nitrogen-containing plasma effective to introduce nitrogen into at least an outermost portion of the silicon oxide comprising layer. Silicon nitride is formed therefrom effective to increase a dielectric constant of the dielectric region from what it was prior to said exposing. Capacitors and methods of forming capacitor dielectric layers are also disclosed.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: May 10, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott J. DeBoer
  • Patent number: 6878587
    Abstract: An intermediate metal plug is used to raise the platform to which contact is to be made. In the illustrated process, a partial bit line plug is formed adjacent a stacked capacitor, and an interlevel dielectric formed over the capacitor. The bit line contact is completed by extending a via from the bit line, formed above the interlevel dielectric, down to the level of the intermediate plug, and the via is filled with metal. The height of the via to be filled is thus reduced by the height of the intermediate plug. In one embodiment, the intermediate plug is slightly shorter than an adjacent container-shaped capacitor. In another embodiment, the intermediate plug is about as high as an adjacent stud capacitor.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: April 12, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. Deboer, Vishnu K. Agarwal
  • Patent number: 6878585
    Abstract: A method of forming a capacitor includes forming first and second capacitor electrodes over a substrate. A capacitor dielectric region is formed intermediate the first and second capacitor electrodes, and includes forming a silicon nitride comprising layer over the first capacitor electrode. A silicon oxide comprising layer is formed over the silicon nitride comprising layer. The silicon oxide comprising layer is exposed to an activated nitrogen species generated from a nitrogen-containing plasma effective to introduce nitrogen into at least an outermost portion of the silicon oxide comprising layer. Silicon nitride is formed therefrom effective to increase a dielectric constant of the dielectric region from what it was prior to said exposing. Capacitors and methods of forming capacitor dielectric layers are also disclosed.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: April 12, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott J. DeBoer
  • Patent number: 6875707
    Abstract: A method of forming a capacitor includes forming first and second capacitor electrodes over a substrate. A capacitor dielectric region is formed intermediate the first and second capacitor electrodes, and includes forming a silicon nitride comprising layer over the first capacitor electrode. A silicon oxide comprising layer is formed over the silicon nitride comprising layer. The silicon oxide comprising layer is exposed to an activated nitrogen species generated from a nitrogen-containing plasma effective to introduce nitrogen into at least an outermost portion of the silicon oxide comprising layer. Silicon nitride is formed therefrom effective to increase a dielectric constant of the dielectric region from what it was prior to said exposing. Capacitors and methods of forming capacitor dielectric layers are also disclosed.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: April 5, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott J. DeBoer
  • Patent number: 6872639
    Abstract: An integrated circuit has a multi-layer stack such as a gate stack or a digit line stack disposed on a layer comprising silicon. A conductive film is formed on the transition metal boride layer. A process for fabricating such devices can include forming the conductive film using a vapor deposition process with a reaction gas comprising fluorine. In the case of a gate stack, the transition metal boride layer can help reduce or eliminate the diffusion of fluorine atoms from the conductive film into a gate dielectric layer. Similarly, in the case of digit line stacks as well as gate stacks, the transition metal boride layer can reduce the diffusion of silicon from the polysilicon layer into the conductive film to help maintain a low resistance for the conductive film.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: March 29, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Husam N. Al-Shareef
  • Patent number: 6825522
    Abstract: An improved capacitor that is less susceptible to the depletion effect and methods for providing the same. The capacitor comprises a first and second electrode and an insulating layer interposed therebetween. The first electrode includes a bulk layer comprising n-doped polysilicon. The first electrode also includes an interface layer extending from a first surface of the bulk layer to the insulating layer. The interface layer is heavily doped with phosphorus so that the depletion region of the first electrode is confined substantially within the interface layer. The method of forming the interface layer comprises depositing a layer of hexamethldisilazane (HMDS) material over the first surface of the bulk layer so that HMDS molecules of the HMDS material chemically bond to the first surface of the bulk layer. The method further comprises annealing the layer of HMDS material in a phosphine ambient so as to replace CH3 methyl groups with PH3 molecules.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: November 30, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Don C. Powell
  • Patent number: 6822342
    Abstract: The present invention includes a residue-free overlay target, as well as a method of forming a residue-free overlay target. The residue-free overlay target of the present invention is defined by trenches or pads including a series of raised lines. The raised lines included in the overlay target of the present invention substantially eliminate any surface topography, such as depressions, at the top surface of overlying material layers and, thereby, prevent accumulation of process residue which may obscure the overlay target and inhibit further processing. The method of the present invention may be accomplished and modified using process technology known in the semiconductor fabrication art and includes providing a semiconductor substrate, depositing a resist layer, patterning the resist, and executing a wet or dry etch to create at least one overlay target according to the present invention.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: November 23, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Pary Baluswamy, Scott J. DeBoer, Ceredig Roberts, Tim H. Bossart