Patents by Inventor Scott L. Battle

Scott L. Battle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9004462
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an ampoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Grant
    Filed: April 13, 2013
    Date of Patent: April 14, 2015
    Assignee: Entegris, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi K. Laxman
  • Publication number: 20130228476
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an ampoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Application
    Filed: April 13, 2013
    Publication date: September 5, 2013
    Applicant: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi K. Laxman
  • Patent number: 8444120
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an ampoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 21, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi K. Laxman
  • Publication number: 20120153048
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an ampoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 21, 2012
    Applicant: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi Laxman
  • Patent number: 8128073
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an amoule may having a removable top. Multiple containers defining multiple material support surfaces be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 6, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi K. Laxman
  • Publication number: 20110052482
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an amoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 3, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi Laxman
  • Patent number: 7828274
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an amoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: November 9, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi Laxman
  • Patent number: 7556244
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an ampoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resuting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: July 7, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi K. Laxman
  • Publication number: 20090136668
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an amoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.
    Type: Application
    Filed: January 23, 2009
    Publication date: May 28, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi Laxman
  • Patent number: 7487956
    Abstract: Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may include an amoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resuting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 10, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi K. Laxman
  • Patent number: 7300038
    Abstract: Structure helps support material in a container with an increased exposed surface area to help promote contact of a gas with vaporized material. For at least one disclosed embodiment, the structure may help support material for vaporization in the same form as when the material is placed at the structure. For at least one disclosed embodiment, the structure may help support material with an increased exposed surface area relative to a maximum exposed surface area the material could have at rest in the container absent the structure. For at least one disclosed embodiment, the structure may define one or more material support surfaces in an interior region of the container in addition to a bottom surface of the interior region of the container. For at least one disclosed embodiment, the structure may define in an interior region of the container one or more material support surfaces having a total surface area greater than a surface area of a bottom surface of the interior region of the container.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: November 27, 2007
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John N. Gregg, Scott L. Battle, Jeffrey I. Banton, Donn K. Naito, Ravi Laxman
  • Patent number: 6458984
    Abstract: A method of purifying tetraethylorthosilicate (TEOS) to remove boron impurities therefrom, and a related method of analyzing TEOS to determine concentration of boron impurities therein.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: October 1, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu, Frank R. Hedges, David Daniel Bernhard, Brian L. Benac, Scott L. Battle, John M. Lansdown
  • Patent number: 5948928
    Abstract: Silane compounds are described having the formula:Si(OR.sup.1).sub.a (O.sub.2 CR.sup.2).sub.b F.sub.cwherein:R.sup.1 is alkyl, alkenyl, alkynyl, aryl or benzylic and is optionally non-fluorinated, partially fluorinated or perfluorinated;R.sup.2 is --CH.sub.2 F, --CHF.sub.2 or --CF.sub.3 ;a is 1, 2 or 3;b is 1 or 2;c is 0, 1 or 2; andwherein a+b+c equals 4. Methods of making and using these silane compounds in integrated circuit fabrication processes also are described.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: September 7, 1999
    Assignee: Advanced Delivery & Chemical Systems, Ltd.
    Inventors: Frederick H. Siegele, Scott L. Battle, Joel J. Kampa