Patents by Inventor Scott N. Roberts

Scott N. Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10746475
    Abstract: Multi-phase thermal control systems, evaporators, variable porous wick elements, heat transfer structures, and methods for their production are provided. Two-phase evaporators for use in such multi-phase thermal control systems are also provided. Two-phase evaporators incorporate a vapor plate body having there three major layers: a vapor channel network, a wick, and a liquid channel. The vapor channel network comprises a plurality of extrusions (e.g., vapor pillars) and associated channels (e.g., vapor channels) configured to allow a vapor to flow therethrough. The wick comprises a porous body configured to be disposed between the vapor channel network of and the liquid flow reservoir.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: August 18, 2020
    Assignee: California Institute of Technology
    Inventors: Scott N. Roberts, Arthur J. Mastropietro, Benjamin I. Furst, Eric T. Sunada, Jordan Mizerak, Hiroki Nagai, Stefano Cappucci
  • Publication number: 20200108443
    Abstract: Systems and methods for additive manufacturing systems implementing adaptive optics in accordance with various embodiments of the invention are illustrated. One embodiment includes an additive manufacturing system including a laser source configured to form an output beam, a scanning mirror disposed in an optical path of the output beam, wherein the scanning mirror is configured to reflect and scan the output beam at a range of scan angles, a deformable mirror disposed in the optical path of the output beam, wherein the deformable mirror has a plurality of configurations for reflecting and altering a wavefront of the output beam, wherein the configuration of the deformable mirror is based on the scan angle of the scanning mirror, and a print bed configured to hold a print material, wherein the output beam is configured to fuse the print material to form a build object.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 9, 2020
    Applicant: California Institute of Technology
    Inventors: John B. Steeves, Scott N. Roberts, Samuel C. Bradford, Christine A. Gebara, Christina J. Naify
  • Publication number: 20190393576
    Abstract: Thermal management systems for battery cells and methods for their additive manufacture are provided. The thermal management systems include at least one heat pipe that physically contacts the battery cell and conforms to its geometry. Each battery cell is deposited within a separate heat pipe, and each heat pipe is disposed on a base plate, which itself connects to a heat sink. In many embodiments, the heat pipe is a two-phase heat exchanger having three major components: liquid channels, wick elements, and vapor channels. In such embodiments, the wick component comprises a porous body configured to be disposed between the liquid channels and vapor channels. The wick component may be made using a stochastic additive manufacturing process such that the wick component may take any configuration and/or such that the wick component may be directly integrated into the body of the heat pipe as a unitary piece thereof.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 26, 2019
    Applicant: California Institute of Technology
    Inventors: Eric T. Sunada, Scott N. Roberts, Benjamin I. Furst, Ratnakumar V. Bugga
  • Publication number: 20180339338
    Abstract: Systems and methods for developing tough hypoeutectic amorphous metal-based materials for additive manufacturing, and methods of additive manufacturing using such materials are provided. The methods use 3D printing of discrete thin layers during the assembly of bulk parts from metallic glass alloys with compositions selected to improve toughness at the expense of glass forming ability. The metallic glass alloy used in manufacturing of a bulk part is selected to have minimal glass forming ability for the per layer cooling rate afforded by the manufacturing process, and may be specially composed for high toughness.
    Type: Application
    Filed: May 24, 2018
    Publication date: November 29, 2018
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Andre M. Pate, Scott N. Roberts
  • Publication number: 20180119259
    Abstract: Systems and methods in accordance with embodiments of the invention advantageously shape sheet materials that include metallic glass-based materials. In one embodiment, a method of shaping a sheet of material including a metallic glass-based material includes: heating a metallic glass-based material within a first region within a sheet of material to a temperature greater than the glass transition temperature of the metallic glass-based material; where the sheet of material has a thickness of between 0.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts
  • Publication number: 20180031330
    Abstract: Multi-phase thermal control systems, evaporators, variable porous wick elements, heat transfer structures, and methods for their production are provided. Two-phase evaporators for use in such multi-phase thermal control systems are also provided. Two-phase evaporators incorporate a vapor plate body having there three major layers: a vapor channel network, a wick, and a liquid channel. The vapor channel network comprises a plurality of extrusions (e.g., vapor pillars) and associated channels (e.g., vapor channels) configured to allow a vapor to flow therethrough. The wick comprises a porous body configured to be disposed between the vapor channel network of and the liquid flow reservoir.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 1, 2018
    Applicant: California Institute of Technology
    Inventors: Scott N. Roberts, Arthur J. Mastropietro, Benjamin I. Furst, Eric T. Sunada
  • Publication number: 20170137955
    Abstract: Systems and method for fabricating a metal core truss panel with seamlessly embedded features in accordance with embodiments of the invention are illustrated. One embodiment includes a method for producing a metal core truss panel composite, the method including fabricating a sacrificial core truss panel including a plurality of interconnected truss members and at least one embedded feature, and plating the sacrificial core truss panel with a layer of metal forming a metal core truss panel including a plurality of interconnected metal truss members and at least one seamlessly embedded metal feature.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 18, 2017
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts
  • Patent number: 9610650
    Abstract: Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150 ?m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: April 4, 2017
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts
  • Patent number: 9187812
    Abstract: Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: November 17, 2015
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts, Henry Kozachkov, Marios D. Demetriou, Joseph P. Schramm, William L. Johnson
  • Publication number: 20140342179
    Abstract: Systems and methods in accordance with embodiments of the invention advantageously shape sheet materials that include metallic glass-based materials. In one embodiment, a method of shaping a sheet of material including a metallic glass-based material includes: heating a metallic glass-based material within a first region within a sheet of material to a temperature greater than the glass transition temperature of the metallic glass-based material; where the sheet of material has a thickness of between 0.
    Type: Application
    Filed: April 14, 2014
    Publication date: November 20, 2014
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts
  • Publication number: 20140312098
    Abstract: Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150 ?m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 23, 2014
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts
  • Patent number: 8776566
    Abstract: An apparatus and method of uniformly heating, rheologically softening, and thermoplastically forming metallic glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) tool in combination with an electromagnetic force generated by the interaction of the applied current with a transverse magnetic field. The RCDF method utilizes the discharge of electrical energy stored in a capacitor to uniformly and rapidly heat a sample or charge of metallic glass alloy to a predetermined “process temperature” between the glass transition temperature of the amorphous metal and the equilibrium melting point of the alloy in a time scale of several milliseconds or less, at which point the interaction between the electric field and the magnetic field generates a force capable of shaping the heated sample into a high quality amorphous bulk article via any number of techniques including, for example, injection molding, dynamic forging, stamp forging, and blow molding in a time scale of less than one second.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: July 15, 2014
    Assignee: California Institute of Technology
    Inventors: William L. Johnson, Georg Kaltenboeck, Marios D. Demetriou, Scott N. Roberts, Konrad Samwer
  • Publication number: 20130319062
    Abstract: An apparatus and method of uniformly heating, rheologically softening, and thermoplastically forming metallic glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) tool in combination with an electromagnetic force generated by the interaction of the applied current with a transverse magnetic field. The RCDF method utilizes the discharge of electrical energy stored in a capacitor to uniformly and rapidly heat a sample or charge of metallic glass alloy to a predetermined “process temperature” between the glass transition temperature of the amorphous metal and the equilibrium melting point of the alloy in a time scale of several milliseconds or less, at which point the interaction between the electric field and the magnetic field generates a force capable of shaping the heated sample into a high quality amorphous bulk article via any number of techniques including, for example, injection molding, dynamic forging, stamp forging, and blow molding in a time scale of less than one second.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: California Institute of Technology
    Inventors: William L. Johnson, George Kaltenboeck, Marios D. Demetriou, Scott N. Roberts, Konrad Samwer
  • Publication number: 20130025746
    Abstract: Sheet casting of metallic glasses and twin roll sheet casting of bulk metallic glasses and composite in an inert environment. Samples may be heated by RF to a temperature in the semi-solid region. After semi-solid processing, the partial liquid then may be poured or injected to achieve the desired shape. Plates of metallic glasses and/or metallic glass matrix composites may be formed (for example, through diecasting) and serve as a pre-form for rolling. In this configuration, the plates may be lowered through a radio frequency coil into compressing wheels, directly next to or below the coil. As the plates pass through the coil they may heat to above the glass transition temperature. Next, they may be fed into the rolling wheel to thermoplasically form the plates into thinner sheets.
    Type: Application
    Filed: April 20, 2012
    Publication date: January 31, 2013
    Applicant: Apple Inc.
    Inventors: Douglas C. Hofmann, Scott N. Roberts, William L. Johnson
  • Publication number: 20120288728
    Abstract: Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.
    Type: Application
    Filed: March 12, 2012
    Publication date: November 15, 2012
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts, Henry Kozachkov, Marios D. Demetriou, Joseph P. Schramm, William L. Johnson