Patents by Inventor Scott Raymond

Scott Raymond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11034487
    Abstract: Examples herein relate generally to reservoirs for use in water distribution systems within an appliance. The reservoir herein allows for the combination of various components prepared by separate manufacturing processes and for reducing waste of those manufacturing components. Specifically, the reservoir herein provides a stopper separable from and for use with a container and a cap.
    Type: Grant
    Filed: June 29, 2019
    Date of Patent: June 15, 2021
    Assignee: Mercury Plastics LLC
    Inventors: Scott Raymond Gardner, Earl Christian, Jr., Donald Currey, William Blue
  • Patent number: 10961256
    Abstract: A compound of formula (Ia), (Ib) or (Ic) wherein: n is 1 or 2; RN is H or Me; R1 is optionally one or more halo or methyl groups; R2a and R2b are independently selected from the group consisting of: (i) F; (ii) H; (iii) Me; and (iv) CH2OH; R2c and R2d (if present) are independently selected from the group consisting of: (i) F; (ii) H; (iii) Me; and (iv) CH2OH; R3a and R3b are independently selected from H and Me; R4a is selected from OH, —NH2, —C(?O)NH2, and —CH2OH; R4b is either H or Me; X is either N or CH; R7 is selected from H and C1-4 alkyl; (a) one of R8a, R8b, R8c and R8d is selected from H, halo, C1-4 alkyl, C1-4 alkoxy, NHC1-4 alkyl; (b) another of R8a, R8b, R8c and R8d is selected from H, C1-4 alkyl, C1-4 fluoroalkyl, C3-6 cycloalkyl, C5-6 heteroaryl, C5-6 heteroaryl methyl, C4-6 heterocyclyl, C4-6 heterocyclyl methyl, phenyl, benzyl, halo, amido, amidomethyl, acylamido, acylamidomethyl, C1-4 alkyl ester, C1-4 alkyl ester methyl, C1-4 alkyl carbamoyl, C1-4 alkyl carbamoyl methyl, C1-4 alkylacyl, C1-
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: March 30, 2021
    Assignee: CTXT PTY LTD
    Inventors: Paul Anthony Stupple, Scott Raymond Walker, Michelle Ang Camerino
  • Publication number: 20210012518
    Abstract: This disclosure describes a configuration of an aerial vehicle, such as an unmanned aerial vehicle (“UAV”), that includes a plurality of cameras that may be selectively combined to form a stereo pair for use in obtaining stereo images that provide depth information corresponding to objects represented in those images. Depending on the distance between an object and the aerial vehicle, different cameras may be selected for the stereo pair based on the baseline between those cameras and a distance between the object and the aerial vehicle. For example, cameras with a small baseline (close together) may be selected to generate stereo images and depth information for an object that is close to the aerial vehicle. In comparison, cameras with a large baseline may be selected to generate stereo images and depth information for an object that is farther away from the aerial vehicle.
    Type: Application
    Filed: May 28, 2020
    Publication date: January 14, 2021
    Inventors: Scott Raymond Harris, Barry James O'Brien, Joshua John Watson
  • Patent number: 10890758
    Abstract: This disclosure describes deflecting moisture out of the field of view of an imaging device during operation of an aerial vehicle, such as a UAV. The imaging device and/or a deflector positioned in the field of view of the imaging device is positioned within a path of a propulsion motor air disturbance. The deflector protects the lens from environmental conditions, such as moisture and rain and is positioned such that the force of the propulsion motor air disturbance moves any moisture, rain, or other debris contacting the surface of the deflector across the deflector surface and out of the field of view of the imaging device. As a result, distortion of image data generated by the imaging device as a result of water or moisture on the lens or in the field of view of the lens of the imaging device is reduced, if not eliminated.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: January 12, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: James Christopher Curlander, Scott Raymond Harris
  • Patent number: 10883620
    Abstract: A valve assembly that provides reliable opening and closing valves at specified times despite changing performance characteristics of the valve is disclosed. The valve assembly includes a controllable valve selectively actuatable to control flow of a fluid therethrough, with the controllable valve having a variable valve open/close response time. The valve assembly also includes a plurality of sensors configured to measure current operational parameters of the controllable valve and/or the fluid and a valve controller programmed to process valve timing control instructions generated by an external source, process inputs from the plurality of sensors regarding the measured operational parameters of the controllable valve and/or the fluid, and provide an actuation signal to the controllable valve based on the valve timing control instructions and the inputs from the plurality of sensors, so as to control a timing of an actuation of the controllable valve.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: January 5, 2021
    Assignee: Bright Energy Storage Technologies, LLP
    Inventors: Nikola Milivojevic, Yusuf Gurkaynak, Jacob Lee Fitzgerald, Scott Raymond Frazier
  • Patent number: 10871702
    Abstract: Described are systems and methods for surveying a destination as an unmanned aerial vehicle (“UAV”) descends toward the destination. To confirm that the destination is clear of objects and includes a safe landing or delivery location, such as a substantially planar surface, the UAV may capture and process images at different altitudes during the descent. Feature points of a first image captured at a first altitude may be paired with feature points of a second image captured at a second, different altitude. A homography may be computed to confirm that the paired feature points lie in the same plane and then the two images may be registered based on the paired feature points. The registered images may then be processed to determine depth information and determine if descent of the UAV is to continue or be aborted.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 22, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Raymond Harris, Stephen Thomas Safarik, Paul Viola
  • Patent number: 10854096
    Abstract: Described are systems, methods, and apparatus for detecting objects within a distance of an aerial vehicle, and developing a three-dimensional model or representation of those objects. Rather than attempting to use stereo imagery to determine distances and/or depth of objects, the described implementations utilize range-gating, or time-gating, and the known position of the aerial vehicle to develop a three-dimensional representation of objects. For example, when the aerial vehicle is at a first position it may use range-gating to detect an object at a defined distance from the vehicle. The aerial vehicle may then alter its position and use range-gating to detect an object that is the defined distance from the vehicle at the new position. This may be done at several different positions and the resulting information and aerial vehicle position information combined to form a three-dimensional representation of those objects.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: December 1, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Raymond Harris, Benjamin Griffin Novak, Joshua John Watson
  • Publication number: 20200337765
    Abstract: According to various embodiments, systems, devices and methods for modulating targeted nerve fibers (e.g., hepatic neuromodulation) or other tissue are provided. The systems may be configured to access tortuous anatomy of or adjacent hepatic vasculature. The systems may be configured to target nerves surrounding (e.g., within adventitia of or within perivascular space of) an artery or other blood vessel, such as the common hepatic artery.
    Type: Application
    Filed: May 14, 2020
    Publication date: October 29, 2020
    Inventor: Scott Raymond Smith
  • Patent number: 10815005
    Abstract: An unmanned aerial vehicle (UAV) landing marker transmits a reply signal in response to receiving radar signals emitted by a UAV. The landing marker can include a passive transponder that emits the reply signal, with the reply signal being a harmonic of the fundamental frequency of the radar signal emitted by the UAV. The landing marker can also include a transmitter to transmit the reply signal. Additionally, the landing marker can include sensors to monitor the environment about the landing marker and this environmental information can be transmitted to the UAV as part of the reply signal.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: October 27, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Michael Wilcox, Joshua John Watson, Scott Raymond Harris
  • Publication number: 20200309451
    Abstract: A CO2 separation and liquefaction system such as might be used in a carbon capture and sequestration system for a fossil fuel burning power plant is disclosed. The CO2 separation and liquefaction system includes a first cooling stage to cool flue gas with liquid CO2, a compression stage coupled to the first cooling stage to compress the cooled flue gas, a second cooling stage coupled to the compression stage and the first cooling stage to cool the compressed flue gas with a CO2 melt and provide the liquid CO2 to the first cooling stage, and an expansion stage coupled to the second cooling stage to extract solid CO2 from the flue gas that melts in the second cooling stage to provide the liquid CO2.
    Type: Application
    Filed: March 30, 2020
    Publication date: October 1, 2020
    Inventors: Miles L. Abarr, Scott Raymond Frazier
  • Patent number: 10706569
    Abstract: This disclosure describes a configuration of an aerial vehicle, such as an unmanned aerial vehicle (“UAV”), that includes a plurality of cameras that may be selectively combined to form a stereo pair for use in obtaining stereo images that provide depth information corresponding to objects represented in those images. Depending on the distance between an object and the aerial vehicle, different cameras may be selected for the stereo pair based on the baseline between those cameras and a distance between the object and the aerial vehicle. For example, cameras with a small baseline (close together) may be selected to generate stereo images and depth information for an object that is close to the aerial vehicle. In comparison, cameras with a large baseline may be selected to generate stereo images and depth information for an object that is farther away from the aerial vehicle.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: July 7, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Raymond Harris, Barry James O'Brien, Joshua John Watson
  • Publication number: 20200197088
    Abstract: According to various embodiments, systems, devices and methods for modulating targeted nerve fibers (e.g., hepatic neuromodulation) or other tissue are provided. Systems, devices and methods for cooling energy delivery members are also provided. The systems may be configured to access tortuous anatomy of or adjacent hepatic vasculature. The systems may be configured to target nerves surrounding (e.g., within adventitia of or within perivascular space of) an artery or other blood vessel, such as the common hepatic artery.
    Type: Application
    Filed: December 26, 2019
    Publication date: June 25, 2020
    Inventors: Anthony Ciro Vrba, Scott Raymond Smith, Bobak Robert Azamian, James G. Hansen
  • Publication number: 20200160536
    Abstract: Automatic tracking by a camera of an object such as on-air talent appearing in a television show commences by first determining whether the object lies within the camera field of view matches a reference object. If so, tracking of the object then occurs to maintain the object in fixed relationship to a pre-set location in the camera's field of view, provided the designated object has moved more than a threshold distance from the pre-set location.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 21, 2020
    Inventors: Alex Holtz, Scott Raymond Matics, Lionel Oisel
  • Patent number: 10647708
    Abstract: A compound of formula (I) wherein: R1 is optionally one or more halo or methyl groups; R2a and R2b are independently selected from the group consisting of: (i) F; (ii) H; (iii) Me; and (iv) CH2OH; R2c and R2d are independently selected from the group consisting of: (i) F; (ii) H; (iii) Me; and (iv) CH2OH; R3a and R3b are independently selected from H and Me; R4 is either H or Me; R5 is either H or Me; A is either (i) optionally substituted phenyl; (ii) optionally substituted naphthyl; or (iii) optionally substituted C5-12 heteroaryl.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: May 12, 2020
    Assignee: CTXT PTY. LTD
    Inventors: Richard Charles Foitzik, Michelle Ang Camerino, Scott Raymond Walker, H. Rachel Lagiakos
  • Patent number: 10634436
    Abstract: A thermal heat capture, storage, and exchange arrangement, includes at least one thermal exchange and storage (TXES) array, with each TXES array including one or more TXES elements that receive a fluid flow of a heat source fluid and a working fluid, with the TXES elements providing for a transfer of thermal energy between the heat source fluid and the TXES elements. A manifold system provides the working fluid to an input of the TXES elements and receives the working fluid from an output of the TXES elements. At least one heat engine operable with the TXES array extracts heat from the TXES array and converts it to mechanical energy, with the heat engine being selectively connected to the manifold system of a TXES array to pass the working fluid through the TXES elements, such that a transfer of thermal energy between the working fluid and the TXES elements occurs.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: April 28, 2020
    Assignee: Bright Energy Storage Technologies, LLP
    Inventors: Scott Raymond Frazier, Jennifer Fon Tuey, Miles L. Abarr, Brendan R. Geels, Karl Ginter, Alex Lau
  • Publication number: 20200108946
    Abstract: Described is an imaging component for use by an unmanned aerial vehicle (“UAV”) for object detection. As described, the imaging component includes one or more cameras that are configured to obtain images of a scene using visible light that are converted into a depth map (e.g., stereo image) and one or more other cameras that are configured to form images, or thermograms, of the scene using infrared radiation (“IR”). The depth information and thermal information are combined to form a representation of the scene based on both depth and thermal information.
    Type: Application
    Filed: July 29, 2019
    Publication date: April 9, 2020
    Inventors: Scott Raymond Harris, Barry James O'Brien, Joshua John Watson
  • Publication number: 20200111090
    Abstract: Systems and methods for point-to-point encryption compliance are disclosed. In one embodiment, in an information processing apparatus comprising at least one computer processor, a method for point-to-point encryption compliance may include: (1) a payment application receiving, from a data source, payment data encrypted using a first encryption method; (2) the payment application identifying a second encryption method for the payment data; (3) the payment application requesting, from the data source, the payment data encrypted using the second encryption method; and (4) the payment application receiving from the data source, the payment data encrypted using the second encryption method.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventor: Scott Raymond Yale
  • Patent number: 10615507
    Abstract: An unmanned aerial vehicle (UAV) landing marker that absorbs incoming radar signals emitted by a UAV and/or disperses reflected radar signals. The absorption and/or dispersion of the radar signals creates a reduced radar return in comparison to the environment about the landing marker. The UAV can detect the area of reduced radar return and determine that it is a landing marker. Additionally, the UAV can determine a position of the landing marker relative to the UAV, based on the reduced radar return, to effect delivery of an item by the UAV. The landing marker can include materials, structures and/or features to absorb and/or disperse radar signals to cause the reduced radar return.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: April 7, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Michael Wilcox, Joshua John Watson, Scott Raymond Harris
  • Patent number: 10594937
    Abstract: An aerial vehicle may include a first sensor, such as a digital camera, having a lens or other component that includes a second sensor mounted thereto. Information or data, such as digital images, captured using the second sensor may be used to determine or predict motion of the lens, which may include components of translational and/or rotational motion. Once the motion of the lens has been determined or predicted, such motion may be used to stabilize information or data, such as digital images, captured using the first sensor, according to optical or digital stabilization techniques. Where operations of the first sensor and the second sensor are synchronized, motion of the second sensor may be modeled based on information or data captured thereby, and imputed to the first sensor.
    Type: Grant
    Filed: December 22, 2018
    Date of Patent: March 17, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Raymond Harris, Ishay Kamon, Joshua John Watson
  • Publication number: 20200039945
    Abstract: A compound of formula (I), or a pharmaceutical salt thereof:
    Type: Application
    Filed: June 20, 2019
    Publication date: February 6, 2020
    Applicant: CTxT Pty Limited
    Inventors: Helen Rachel Lagiakos, Benjamin Joseph Morrow, Richard Charles Foitzik, Catherine Fae Hemley, Michelle Ang Camerino, Paul Anthony Stupple, Ylva Elisabet Bergman Bozikis, Scott Raymond Walker